Decalf: A <u>D</u>irected, <u>E</u>ffectful <u>Cost-Aware Logical Framework</u>

<u>Harrison Grodin</u>¹ Yue Niu¹ Jonathan Sterling² Robert Harper¹ POPL 2024

¹Carnegie Mellon University

²University of Cambridge

Motivation

Example (List Map)

```
map: (A \to B) \to list(A) \to list(B)map f [] = []map f (x :: xs) = f x :: map f xs
```

Motivation

Example (List Map)

```
map: (A \to B) \to list(A) \to list(B)map f [] = []map f (x :: xs) = f x :: map f xs
```

Goal

What is the cost of *map*?

- higher-order function
- argument may perform effects

decalf (embedded in Agda) gives an elegant, linguistic answer.

Core Language

phase distinction

4 Effects in Call-By-Push-Value [Levy, 2003]

		_	
	110	1.1	200
va	ue		Jes

$$egin{aligned} A,B,C & & ee & \mathsf{U}(X) \ & 0 & A+B \ & 1 & A imes B \ & A & o B \ & \mathsf{nat} \ & \mathsf{list}(A) \ & ee &$$

Computation Types

$$X, Y, Z ::= F(A)$$

 $1 \quad X \times Y$
 $A \to X$
 \vdots

) Effects in Call-By-Push-Value [Levy, 2003]

Value Types

$$A, B, C ::= U(X)$$

 $0 \quad A + B$
 $1 \quad A \times B$
 $A \rightarrow B$
 nat
 $list(A)$
 \vdots

Computation Types

```
X, Y, Z ::= F(A)
1 \quad X \times Y
A \to X
\vdots
```

These support effects while retaining equational reasoning principles (*e.g.*, β/η equality and pointwise function equality).

Assume some value type \mathbb{C} representing cost monoid (e.g., $(\mathbb{N}, 0, +)$).

Definition (Cost Effect)

 $\frac{\Gamma \vdash c : \mathbb{C} \qquad \Gamma \vdash e : X}{\Gamma \vdash \mathsf{step}^c(e) : X}$

$$\operatorname{step}^0(e) = e$$

 $\operatorname{step}^{c_1}(\operatorname{step}^{c_2}(e)) = \operatorname{step}^{c_1+c_2}(e)$

To show an exact cost bound, use program equality.

To show an exact cost bound, use program equality.

Definition (Exact Cost in calf)

$$hasCost_A(e, c) \coloneqq \sum_{a:A} (e = step^c(ret(a)))$$

To show an exact cost bound, use program equality.

Definition (Exact Cost in calf)

$$\mathsf{hasCost}_A(e,c)\coloneqq \sum_{a:A} (e = \mathsf{step}^c(\mathsf{ret}(a)))$$

Example (Merge Sort)

For all I: list(nat), we have hasCost(msort I, $|I| \log_2 |I|$).

) Inequality [Licata and Harper, 2011, Riehl and Shulman, 2017]

$$e\leq_X e'$$

Intuition

Both e and e' compute the same result, but e may be cheaper.

Inequality [Licata and Harper, 2011, Riehl and Shulman, 2017]

$$e\leq_X e'$$

Intuition

Both e and e' compute the same result, but e may be cheaper.

Example

$$step^{3}(ret("hi")) \leq_{F(string)} step^{12}(ret("hi"))$$

ight) ${f Inequality}$ [Licata and Harper, 2011, Riehl and Shulman, 2017]

$$e\leq_X e'$$

Intuition

Both e and e' compute the same result, but e may be cheaper.

Example

$$step^{3}(ret("hi")) \leq_{F(string)} step^{12}(ret("hi"))$$

Remark

Inequality verifies cost and behavior by comparing programs.

ight) ${f Inequality}$ [Licata and Harper, 2011, Riehl and Shulman, 2017]

$$e\leq_X e'$$

Intuition

Both e and e' compute the same result, but e may be cheaper.

Example

$$step^{3}(ret("hi")) \leq_{F(string)} step^{12}(ret("hi"))$$

Remark

Inequality verifies cost and behavior by comparing programs.

Remark

Inspired by *directed type theory*.

To show an inexact cost bound, use program inequality.

\leq Inexact Cost

Big Idea

To show an inexact cost bound, use program inequality.

Definition (Inexact Cost)

$$\mathsf{isBounded}_A(e,c) \coloneqq \sum_{a:A} (e \leq \mathsf{step}^c(\mathsf{ret}(a)))$$

≤) Inexact Cost

Big Idea

To show an inexact cost bound, use program inequality.

Definition (Inexact Cost)

$$\mathsf{isBounded}_A(e,c) \coloneqq \sum_{a:A} (e \leq \mathsf{step}^c(\mathsf{ret}(a)))$$

Example (Insertion Sort)

For all I: list(nat), we have isBounded(*isort* I, $|I|^2$).

Equality vs. Inequality

Equality =

- reflexive
- transitive
- symmetric
- congruence:
 - a = a' implies f(a) = f(a')
- pointwise on functions

Inequality \leq

- reflexive
- transitive
- N/A
- monotone:
 - $a \leq a'$ implies $f(a) \leq f(a')$
- pointwise on functions

Equality vs. Inequality

Equality =

- reflexive
- transitive
- symmetric
- congruence:
 - a = a' implies f(a) = f(a')
- pointwise on functions

Inequality \leq

- reflexive
- transitive
- N/A
- monotone:
 - $a \leq a'$ implies $f(a) \leq f(a')$
- pointwise on functions

Compositional cost analysis via inequality reasoning.

Example (List Insert)

```
insert : nat \rightarrow list(nat) \rightarrow F(list(nat))

insert x [] = ret(x :: [])

insert x (y :: ys) =

bind b \leftarrow step^{1}(x \leq ? y) in

if b then ret(x :: y :: ys) else

bind ys' \leftarrow insert x ys in ret(y :: ys')
```

Example (List Insert)

```
insert : nat \rightarrow list(nat) \rightarrow F(list(nat))
insert x [] = ret(x :: [])
insert x (y :: ys) =
bind b \leftarrow step^{1}(x \leq ? y) in
if b then ret(x :: y :: ys) else
bind ys' \leftarrow insert x ys in ret(y :: ys')
```

Theorem (Closed Form Bound)

insert
$$\leq \lambda x. \lambda I. \operatorname{step}^{|I|}(\operatorname{ret}(\operatorname{insert}_{spec} \times I))$$

Theorem (Closed Form Bound)

$$insert \leq \lambda x. \lambda I. \operatorname{step}^{|I|}(\operatorname{ret}(insert_{spec} \times I))$$

Proof Excerpt.

```
begin

step<sup>1</sup>(bind ys' \leftarrow insert x ys in ret(x :: ys'))

\leq \langle \text{ monotonicity, IH } \rangle

step<sup>1</sup>(bind ys' \leftarrow step<sup>|ys|</sup>(ret(insert_{spec} x ys)) in ret(x :: ys'))

= \langle \rangle

step<sup>1+|ys|</sup>(ret(y :: insert_{spec} x ys))

= \langle \rangle

step<sup>|y::ys|</sup>(ret(insert_{spec} x ys))
```

) Extensional Phase [Sterling and Harper, 2021, Sterling, 2021]

Definition (Extensional Phase)

Proposition ext for isolating behavior. If ext holds:

- $\bullet \ \mathbb{C}\cong \mathbf{1}$
- $a \le a'$ implies a = a'

Modality $\bigcirc A := (ext \rightarrow A)$ isolates behavioral part of A.

) Extensional Phase [Sterling and Harper, 2021, Sterling, 2021]

Definition (Extensional Phase)

Proposition ext for isolating behavior. If ext holds:

• $\mathbb{C}\cong \mathbf{1}$

• $a \leq a'$ implies a = a'

Modality $\bigcirc A := (ext \rightarrow A)$ isolates behavioral part of A.

Corollary (Noninterference)

If $\bigcirc A \cong \mathbf{1}$, then every function $A \to \bigcirc B$ is constant.

Cost does not impact behavior.

Corollary (Cost Removal)

If ext holds, then $\mathbb{C} \cong \mathbf{1}$. So, every $c : \mathbb{C}$ equals 0:

 $step^{c}(e) = step^{0}(e) = e$

Corollary (Cost Removal)

If ext holds, then $\mathbb{C} \cong \mathbf{1}$. So, every $c : \mathbb{C}$ equals 0:

 $step^{c}(e) = step^{0}(e) = e$

Example

If ext holds, then *isort* = *msort*.

Effects

decalf supports algebraic effects beyond cost.

Examples:

- errors
- nondeterminism
- probabilistic choice
- global state

Probabilistic Choice

Definition (Biased Coin Flip)

$$\frac{\Gamma \vdash p : \mathbb{Q}_{[0,1]} \quad \Gamma \vdash e_0 : X \quad \Gamma \vdash e_1 : X}{\Gamma \vdash \mathsf{flip}_p(e_0, e_1) : X}$$

$$\begin{split} \mathsf{flip}_{\rho}(e_0,\,e_1) &= \mathsf{flip}_{1-\rho}(e_1,\,e_0) \ & \mathsf{flip}_{\rho}(e,\,e) &= e \end{split}$$

$$\operatorname{step}^{c}(\operatorname{flip}_{p}(e_{0}, e_{1})) = \operatorname{flip}_{p}(\operatorname{step}^{c}(e_{0}), \operatorname{step}^{c}(e_{1}))$$

Randomized Quicksort [Hoare, 1961, Hoare, 1962]

Example

Randomized parallel quicksort:

```
\mathit{qsort}:\mathsf{list}(\mathsf{nat})\to\mathsf{F}(\mathsf{list}(\mathsf{nat}))
```

Benign randomization; same value always returned. So:

$$qsort \leq \lambda I. \operatorname{step}^{|I|^2}(\operatorname{ret}(sort_{\operatorname{spec}}|I))$$

Proof by induction.

Randomized Quicksort [Hoare, 1961, Hoare, 1962]

Example

Randomized parallel quicksort:

```
\mathit{qsort}:\mathsf{list}(\mathsf{nat})\to\mathsf{F}(\mathsf{list}(\mathsf{nat}))
```

Benign randomization; same value always returned. So:

$$qsort \leq \lambda I. \operatorname{step}^{|I|^2}(\operatorname{ret}(sort_{\operatorname{spec}}|I))$$

Proof by induction.

Corollary (Correctness)

 \bigcirc (*qsort* = λ *I*. ret(*sort_{spec} I*))

Example (Random Sublist)

```
\begin{aligned} sublist : \mathsf{list}(\mathsf{nat}) &\to \mathsf{F}(\mathsf{list}(\mathsf{nat})) \\ sublist [] &= \mathsf{ret}([]) \\ sublist (x :: xs) &= \\ & \mathsf{bind} \ xs' \leftarrow \mathsf{sublist} \ xs \ \mathsf{in} \\ & \mathsf{flip}_{\frac{1}{2}}(\mathsf{ret}(xs'), \ \mathsf{step}^1(\mathsf{ret}(x :: xs'))) \end{aligned}
```

Example (Random Sublist)

```
\begin{aligned} sublist : \mathsf{list}(\mathsf{nat}) &\to \mathsf{F}(\mathsf{list}(\mathsf{nat})) \\ sublist [] &= \mathsf{ret}([]) \\ sublist (x :: xs) &= \\ & \mathsf{bind} \ xs' \leftarrow \mathsf{sublist} \ xs \ \mathsf{in} \\ & \mathsf{flip}_{\frac{1}{2}}(\mathsf{ret}(xs'), \ \mathsf{step}^1(\mathsf{ret}(x :: xs'))) \end{aligned}
```

Example (Binomial Cost)

 $\begin{array}{l} \textit{binomial}: \mathsf{nat} \to \mathsf{F}(1) \\ \textit{binomial} \; \mathsf{zero} = \mathsf{ret}(\star) \\ \textit{binomial} \; (\mathsf{suc}(n)) = \\ & \mathsf{flip}_{\frac{1}{2}}(\textit{binomial} \; n, \; \mathsf{step}^1(\textit{binomial} \; n)) \end{array}$

Definition (Result Erasure)

$$\|-\|:\mathsf{F}(\mathcal{A}) o\mathsf{F}(1)$$

 $\|e\|=e ext{ ; ret}(\star)$

Definition (Result Erasure)

$$\|-\|:\mathsf{F}(A) o\mathsf{F}(1)$$

 $\|e\|=e ext{ ; ret}(\star)$

Theorem (Random Sublist Cost)

 $\lambda I. \|$ sublist $I \| = \lambda I.$ binomial |I|

Definition (Result Erasure)

$$\|-\|:\mathsf{F}(A) o\mathsf{F}(1)$$

 $\|e\|=e ext{ ; ret}(\star)$

Theorem (Random Sublist Cost)

$$egin{aligned} &\lambda I. \| extsf{sublist} I \| &= \lambda I. extsf{binomial} \| I \| \ &\leq \lambda I. extsf{step}^{|I|}(extsf{ret}(\star)) \end{aligned}$$

Example (List Map)

```
map : U(A \to F(B)) \to list(A) \to F(list(B))map f [] = ret([])map f (x :: xs) =bind ys \leftarrow map f xs inbind y \leftarrow f x inret(y :: ys)
```

If f can perform arbitrary effects, there's no hope for a succinct, informative bound!

List Map Bounds

Theorem (Trivial Bound)

Always, map \leq map.

List Map Bounds

Theorem (Trivial Bound)

Always, $map \leq map$.

Theorem (Pure Bound)

If $||f x|| \leq \operatorname{step}^{c}(\operatorname{ret}(\star))$, then

 $\|map \ f \ I\| \leq \operatorname{step}^{c|I|}(\operatorname{ret}(\star)).$

List Map Bounds

Theorem (Trivial Bound)

Always, $map \leq map$.

Theorem (Pure Bound)

If $||f x|| \leq \operatorname{step}^{c}(\operatorname{ret}(\star))$, then

$$\|map f I\| \leq \operatorname{step}^{c|I|}(\operatorname{ret}(\star)).$$

Theorem (Randomized Bound)

If $||f x|| \leq binomial n$, then

 $\|map f I\| \leq binomial (n|I|).$

Semantics

Definition (Path Relation)

Let $(\mathbb{I}, 0, 1)$ be an interval. Then, the *path relation* $x \sqsubseteq_A y$ is:

$$\exists p \colon \mathbb{I} \to A. \ (p \ 0 = x) \land (p \ 1 = y)$$

Definition (Path Relation)

Let $(\mathbb{I}, 0, 1)$ be an interval. Then, the *path relation* $x \sqsubseteq_A y$ is:

$$\exists p \colon \mathbb{I} \to A. \ (p \ 0 = x) \land (p \ 1 = y)$$

Goal

transitive

$$\stackrel{\frown}{=} monotone: a \sqsubseteq_A a' \text{ implies } f(a) \sqsubseteq_B f(a')$$

- pointwise on functions
- \Box extensionally discrete: $\bigcirc(x \sqsubseteq_A y)$ implies $\bigcirc(x = y)$

Extensional Discreteness

Require that $\bigcirc \mathbb{I} \cong \mathbf{1}$.

Under ext, any map $\mathbb{I} \to A$ is constant, so $x \sqsubseteq_A y$ is x = y.

Goal Image: reflexive Image: transitive Image: monotone: $a \sqsubseteq_A a'$ implies $f(a) \sqsubseteq_B f(a')$ Image: pointwise on functions Image: extensionally discrete: $\bigcirc (x \sqsubseteq_A y)$ implies $\bigcirc (x = y)$

Extensional Discreteness

Require that $\bigcirc \mathbb{I} \cong \mathbf{1}$.

Under ext, any map $\mathbb{I} \to A$ is constant, so $x \sqsubseteq_A y$ is x = y.

Transitivity and Pointwise Ordering

Path relation $x \sqsubseteq_A y$ is not transitive/pointwise on all A. So, isolate a class of A's (reflective subuniverse) for which it is.

Goal Image: reflexive Image: transitive Image: monotone: $a \sqsubseteq_A a'$ implies $f(a) \sqsubseteq_B f(a')$ Image: pointwise on functions Image: extensionally discrete: $\bigcirc (x \sqsubseteq_A y)$ implies $\bigcirc (x = y)$

Transitivity and Pointwise Ordering

Path relation $x \sqsubseteq_A y$ is not transitive/pointwise on all A. So, isolate a class of A's (reflective subuniverse) for which it is.

Goal Image: constraint of the second state of the second sta

A Non-Trivial Model

Axioms

- 1. Interval \mathbb{I} ,
- 2. discrete type \mathbb{N} ,
- 3. proposition ext,
- 4. and $\bigcirc (\mathbb{I} \cong \mathbf{1})$.

A Non-Trivial Model

Axioms

- 1. Interval \mathbb{I} ,
- 2. discrete type \mathbb{N} ,
- 3. proposition ext,
- 4. and $\bigcirc (\mathbb{I} \cong \mathbf{1})$.

Example (Augmented Simplicial Sets)

Simplicial sets, but where initial object [-1] is added to the simplex category.

 $\mathbb{I} \coloneqq \mathbf{y}[1]$ ext $\coloneqq \mathbf{y}[-1]$

Example (Cost Model ω as a **QIT)**

data ω where

 ${\sf zero}$: ω

 $\operatorname{suc}: \omega \to \omega$ _: $(n:\omega) \to n \sqsubseteq_{\omega} \operatorname{suc} n$

Example (Cost Model ω as a **QIT)**

data ω where

 ${\sf zero}$: ω

suc :
$$\omega \to \omega$$

: $(n : \omega) \to n \Box{\omega}$ suc n

Theorem ($\mathbb{C} \coloneqq \omega$ is a Valid Cost Model)

 $\bigcirc(\omega\cong\mathbf{1})$

Conclusion

Amortized Analysis [Grodin and Harper, 2023]

Amortized upper bounds (using coinduction)?

Abstraction

Abstract data types and cost signatures? Separating cost from correctness?

Parallelism and Effects

Effects in parallel (commutative)? Non-algebraic effects (e.g., unbounded recursion)?

Advanced Probabilistic Analysis

Expected/with-high-probability cost analysis?

Conclusion

Contribution

calf does synthetic cost analysis at F(-) types. decalf adds:

- 4
- support for effects and higher-order programs and
- program inequality for inexact bounds
- harmonious with extensional reasoning.

Conclusion

Contribution

calf does synthetic cost analysis at F(-) types. decalf adds:

support for effects and higher-order programs and

program inequality for inexact bounds

harmonious with extensional reasoning.

Justification

- 1. Topos-theoretically via augmented simplicial sets, and
- 2. practically via full-scale examples embedded in Agda.

References i

Danielsson, N. A. (2008). Lightweight semiformal time complexity analysis for purely functional data structures.

In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL '08, page 133–144, New York, NY, USA. Association for Computing Machinery.

Grodin, H. and Harper, R. (2023). Amortized Analysis via Coinduction.

In Baldan, P. and de Paiva, V., editors, *10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023)*, volume 270 of *Leibniz International*

Proceedings in Informatics (LIPIcs), pages 23:1–23:6, Dagstuhl, Germany. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

Hoare, C. A. R. (1961).

```
Algorithm 64: Quicksort.
```

Communications of the ACM, 4(7):321.

```
Hoare, C. A. R. (1962).
```

Quicksort.

The Computer Journal, 5(1):10-16.

📄 Hyland, J. M. E. (1991).

First steps in synthetic domain theory.

In Carboni, A., Pedicchio, M. C., and Rosolini, G., editors, *Category Theory*, pages 131–156, Berlin, Heidelberg. Springer Berlin Heidelberg.

Levy, P. B. (2003).

Adjunction models for call-by-push-value with stacks. Electronic Notes in Theoretical Computer Science, 69:248–271. CTCS'02, Category Theory and Computer Science.

References iv

Licata, D. R. and Harper, R. (2011).

2-dimensional directed type theory.

Electronic Notes in Theoretical Computer Science, 276:263–289. Twenty-seventh Conference on the Mathematical Foundations of Programming Semantics (MFPS XXVII).

Niu, Y., Sterling, J., Grodin, H., and Harper, R. (2022).A cost-aware logical framework.

Proceedings of the ACM on Programming Languages, 6(POPL).

Phoa, W. (1991).

Domain Theory in Realizability Toposes.

PhD thesis, University of Edinburgh.

Plotkin, G. D. and Power, J. (2002).

Notions of computation determine monads.

In Proceedings of the 5th International Conference on Foundations of Software Science and Computation Structures, pages 342–356, Berlin, Heidelberg. Springer-Verlag.

Riehl, E. and Shulman, M. (2017).

A type theory for synthetic ∞ -categories. Higher Structures, 1:147–224.

Sterling, J. (2021).

First Steps in Synthetic Tait Computability: The Objective Metatheory of Cubical Type Theory.

PhD thesis, Carnegie Mellon University.

Version 1.1, revised May 2022.

Sterling, J. and Harper, R. (2021).

Logical relations as types: Proof-relevant parametricity for program modules.

Journal of the ACM, 68(6).