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Motivation

Example (List Map)

map : (A→ B)→ list(A)→ list(B)

map f [] = []

map f (x :: xs) = f x :: map f xs

Goal

What is the cost of map?

• higher-order function

• argument may perform effects

decalf (embedded in Agda) gives an elegant, linguistic answer.
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Core Language



� effects

≤ program inequality

φ phase distinction
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� Effects in Call-By-Push-Value [Levy, 2003]

Value Types

A,B,C ::= U(X )

0 A+ B

1 A× B

A→ B

nat

list(A)

...

Computation Types

X ,Y ,Z ::= F(A)

1 X × Y

A→ X

...

These support effects while retaining

equational reasoning principles (e.g., β/η

equality and pointwise function equality).
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� Abstract Cost as an Effect [Danielsson, 2008]

Assume some value type C representing cost monoid (e.g., (N, 0,+)).

Definition (Cost Effect)

Γ ⊢ c : C Γ ⊢ e : X

Γ ⊢ stepc(e) : X

step0(e) = e

stepc1(stepc2(e)) = stepc1+c2(e)
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≤ Exact Cost [Niu et al., 2022]

Big Idea

To show an exact cost bound, use program equality.

Definition (Exact Cost in calf)

hasCostA(e, c) :=
∑
a:A

(e = stepc(ret(a)))

Example (Merge Sort)

For all l : list(nat), we have hasCost(msort l , |l | log2|l |).
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≤ Inequality [Licata and Harper, 2011, Riehl and Shulman, 2017]

e ≤X e′

Intuition

Both e and e ′ compute the same result, but e may be cheaper.

Example

step3(ret("hi")) ≤F(string) step
12(ret("hi"))

Remark

Inequality verifies cost and behavior by comparing programs.

Remark

Inspired by directed type theory.
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≤ Inexact Cost

Big Idea

To show an inexact cost bound, use program inequality.

Definition (Inexact Cost)

isBoundedA(e, c) :=
∑
a:A

(e ≤ stepc(ret(a)))

Example (Insertion Sort)

For all l : list(nat), we have isBounded(isort l , |l |2).
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≤ Equality vs. Inequality

Equality =

• reflexive

• transitive

• symmetric

• congruence:

a = a′ implies f (a) = f (a′)

• pointwise on functions

Inequality ≤

• reflexive

• transitive

• N/A

• monotone:

a ≤ a′ implies f (a) ≤ f (a′)

• pointwise on functions

Compositional cost analysis via inequality reasoning.
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≤ Reasoning About ≤

Example (List Insert)

insert : nat→ list(nat)→ F(list(nat))

insert x [] = ret(x :: [])

insert x (y :: ys) =

bind b ← step1(x ≤? y) in

if b then ret(x :: y :: ys) else

bind ys ′ ← insert x ys in ret(y :: ys ′)

Theorem (Closed Form Bound)

insert ≤ λx . λl . step|l |(ret(insertspec x l))
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≤ Reasoning About ≤

Theorem (Closed Form Bound)

insert ≤ λx . λl . step|l |(ret(insertspec x l))

Proof Excerpt.

begin

step1(bind ys ′ ← insert x ys in ret(x :: ys ′))

≤⟨ monotonicity, IH ⟩
step1(bind ys ′ ← step|ys|(ret(insertspec x ys)) in ret(x :: ys ′))

=⟨⟩
step1+|ys|(ret(y :: insertspec x ys))

=⟨⟩
step|y ::ys|(ret(insertspec x ys))
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φ Extensional Phase [Sterling and Harper, 2021, Sterling, 2021]

Definition (Extensional Phase)

Proposition ext for isolating behavior. If ext holds:

• C ∼= 1

• a ≤ a′ implies a = a′

Modality #A := (ext→ A) isolates behavioral part of A.

Corollary (Noninterference)

If #A ∼= 1, then every function A→ #B is constant.

Cost does not impact behavior.
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φ Cost Removal [Niu et al., 2022]

Corollary (Cost Removal)

If ext holds, then C ∼= 1. So, every c : C equals 0:

stepc(e) = step0(e) = e

Example

If ext holds, then isort = msort.
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Effects



Effects in decalf [Plotkin and Power, 2002]

decalf supports algebraic effects beyond cost.

Examples:

• errors

• nondeterminism

• probabilistic choice

• global state
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Probabilistic Choice

Definition (Biased Coin Flip)

Γ ⊢ p : Q[0,1] Γ ⊢ e0 : X Γ ⊢ e1 : X

Γ ⊢ flipp(e0, e1) : X

flipp(e0, e1) = flip1−p(e1, e0)

flipp(e, e) = e

...

stepc(flipp(e0, e1)) = flipp(step
c(e0), step

c(e1))
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Randomized Quicksort [Hoare, 1961, Hoare, 1962]

Example

Randomized parallel quicksort:

qsort : list(nat)→ F(list(nat))

Benign randomization; same value always returned. So:

qsort ≤ λl . step|l |
2
(ret(sortspec l))

Proof by induction.

Corollary (Correctness)

#(qsort = λl . ret(sortspec l))
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Random Sublist

Example (Random Sublist)

sublist : list(nat)→ F(list(nat))

sublist [] = ret([])

sublist (x :: xs) =

bind xs ′ ← sublist xs in

flip½(ret(xs
′), step1(ret(x :: xs ′)))

Example (Binomial Cost)

binomial : nat→ F(1)

binomial zero = ret(⋆)

binomial (suc(n)) =

flip½(binomial n, step1(binomial n))
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Random Sublist Analysis

Definition (Result Erasure)

∥−∥ : F(A)→ F(1)

∥e∥ = e ; ret(⋆)

Theorem (Random Sublist Cost)

λl . ∥sublist l∥ = λl . binomial |l |

≤ λl . step|l |(ret(⋆))
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List Map

Example (List Map)

map : U(A→ F(B))→ list(A)→ F(list(B))

map f [] = ret([])

map f (x :: xs) =

bind ys ← map f xs in

bind y ← f x in

ret(y :: ys)

If f can perform arbitrary effects, there’s no hope for a succinct, informative bound!
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List Map Bounds

Theorem (Trivial Bound)

Always, map ≤ map.

Theorem (Pure Bound)

If ∥f x∥ ≤ stepc(ret(⋆)), then

∥map f l∥ ≤ stepc|l |(ret(⋆)).

Theorem (Randomized Bound)

If ∥f x∥ ≤ binomial n, then

∥map f l∥ ≤ binomial (n|l |).
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Semantics



Inequality via an Interval [Hyland, 1991, Phoa, 1991]

Definition (Path Relation)

Let (I, 0, 1) be an interval. Then, the path relation x ⊑A y is:

∃p : I→ A. (p 0 = x) ∧ (p 1 = y)

Goal

□✓ reflexive

□ transitive

□✓ monotone: a ⊑A a′ implies f (a) ⊑B f (a′)

□ pointwise on functions

□ extensionally discrete: #(x ⊑A y) implies #(x = y)
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Inequality via an Interval [Hyland, 1991, Phoa, 1991]

Extensional Discreteness

Require that #I ∼= 1.

Under ext, any map I→ A is constant, so x ⊑A y is x = y .

Goal
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Inequality via an Interval [Hyland, 1991, Phoa, 1991]

Transitivity and Pointwise Ordering

Path relation x ⊑A y is not transitive/pointwise on all A. So, isolate a class of A’s

(reflective subuniverse) for which it is.
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A Non-Trivial Model

Axioms

1. Interval I,

2. discrete type N,

3. proposition ext,

4. and #(I ∼= 1).

Example (Augmented Simplicial Sets)

Simplicial sets, but where initial object [−1] is added to the simplex category.

I := y[1]

ext := y[−1]

22
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Cost Model as a Directed QIT

Example (Cost Model ω as a QIT)

data ω where

zero : ω

suc : ω → ω

: (n : ω)→ n ⊑ω suc n

Theorem (C := ω is a Valid Cost Model)

#(ω ∼= 1)
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Conclusion



Future Work

Amortized Analysis [Grodin and Harper, 2023]

Amortized upper bounds (using coinduction)?

Abstraction

Abstract data types and cost signatures? Separating cost from correctness?

Parallelism and Effects

Effects in parallel (commutative)? Non-algebraic effects (e.g., unbounded recursion)?

Advanced Probabilistic Analysis

Expected/with-high-probability cost analysis?

24



Conclusion

Contribution

calf does synthetic cost analysis at F(−) types. decalf adds:

� support for effects and higher-order programs and

≤ program inequality for inexact bounds

φ harmonious with extensional reasoning.

Justification

1. Topos-theoretically via augmented simplicial sets, and

2. practically via full-scale examples embedded in Agda.
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