
Decalf: A Directed, Effectful

Cost-Aware Logical Framework

Harrison Grodin1 Yue Niu1 Jonathan Sterling2 Robert Harper1

POPL 2024

1Carnegie Mellon University

2University of Cambridge � φ

≤

1



Motivation

Example (List Map)

map : (A→ B)→ list(A)→ list(B)

map f [] = []

map f (x :: xs) = f x :: map f xs

Goal

What is the cost of map?

• higher-order function

• argument may perform effects

decalf (embedded in Agda) gives an elegant, linguistic answer.

2



Motivation

Example (List Map)

map : (A→ B)→ list(A)→ list(B)

map f [] = []

map f (x :: xs) = f x :: map f xs

Goal

What is the cost of map?

• higher-order function

• argument may perform effects

decalf (embedded in Agda) gives an elegant, linguistic answer.

2



Core Language



� effects

≤ program inequality

φ phase distinction

3



� Effects in Call-By-Push-Value [Levy, 2003]

Value Types

A,B,C ::= U(X )

0 A+ B

1 A× B

A→ B

nat

list(A)

...

Computation Types

X ,Y ,Z ::= F(A)

1 X × Y

A→ X

...

These support effects while retaining

equational reasoning principles (e.g., β/η

equality and pointwise function equality).

4



� Effects in Call-By-Push-Value [Levy, 2003]

Value Types

A,B,C ::= U(X )

0 A+ B

1 A× B

A→ B

nat

list(A)

...

Computation Types

X ,Y ,Z ::= F(A)

1 X × Y

A→ X

...

These support effects while retaining

equational reasoning principles (e.g., β/η

equality and pointwise function equality).

4



� Abstract Cost as an Effect [Danielsson, 2008]

Assume some value type C representing cost monoid (e.g., (N, 0,+)).

Definition (Cost Effect)

Γ ⊢ c : C Γ ⊢ e : X

Γ ⊢ stepc(e) : X

step0(e) = e

stepc1(stepc2(e)) = stepc1+c2(e)

5



≤ Exact Cost [Niu et al., 2022]

Big Idea

To show an exact cost bound, use program equality.

Definition (Exact Cost in calf)

hasCostA(e, c) :=
∑
a:A

(e = stepc(ret(a)))

Example (Merge Sort)

For all l : list(nat), we have hasCost(msort l , |l | log2|l |).

6



≤ Exact Cost [Niu et al., 2022]

Big Idea

To show an exact cost bound, use program equality.

Definition (Exact Cost in calf)

hasCostA(e, c) :=
∑
a:A

(e = stepc(ret(a)))

Example (Merge Sort)

For all l : list(nat), we have hasCost(msort l , |l | log2|l |).

6



≤ Exact Cost [Niu et al., 2022]

Big Idea

To show an exact cost bound, use program equality.

Definition (Exact Cost in calf)

hasCostA(e, c) :=
∑
a:A

(e = stepc(ret(a)))

Example (Merge Sort)

For all l : list(nat), we have hasCost(msort l , |l | log2|l |).

6



≤ Inequality [Licata and Harper, 2011, Riehl and Shulman, 2017]

e ≤X e′

Intuition

Both e and e ′ compute the same result, but e may be cheaper.

Example

step3(ret("hi")) ≤F(string) step
12(ret("hi"))

Remark

Inequality verifies cost and behavior by comparing programs.

Remark

Inspired by directed type theory.

7



≤ Inequality [Licata and Harper, 2011, Riehl and Shulman, 2017]

e ≤X e′

Intuition

Both e and e ′ compute the same result, but e may be cheaper.

Example

step3(ret("hi")) ≤F(string) step
12(ret("hi"))

Remark

Inequality verifies cost and behavior by comparing programs.

Remark

Inspired by directed type theory.

7



≤ Inequality [Licata and Harper, 2011, Riehl and Shulman, 2017]

e ≤X e′

Intuition

Both e and e ′ compute the same result, but e may be cheaper.

Example

step3(ret("hi")) ≤F(string) step
12(ret("hi"))

Remark

Inequality verifies cost and behavior by comparing programs.

Remark

Inspired by directed type theory.

7



≤ Inequality [Licata and Harper, 2011, Riehl and Shulman, 2017]

e ≤X e′

Intuition

Both e and e ′ compute the same result, but e may be cheaper.

Example

step3(ret("hi")) ≤F(string) step
12(ret("hi"))

Remark

Inequality verifies cost and behavior by comparing programs.

Remark

Inspired by directed type theory.
7



≤ Inexact Cost

Big Idea

To show an inexact cost bound, use program inequality.

Definition (Inexact Cost)

isBoundedA(e, c) :=
∑
a:A

(e ≤ stepc(ret(a)))

Example (Insertion Sort)

For all l : list(nat), we have isBounded(isort l , |l |2).

8



≤ Inexact Cost

Big Idea

To show an inexact cost bound, use program inequality.

Definition (Inexact Cost)

isBoundedA(e, c) :=
∑
a:A

(e ≤ stepc(ret(a)))

Example (Insertion Sort)

For all l : list(nat), we have isBounded(isort l , |l |2).

8



≤ Inexact Cost

Big Idea

To show an inexact cost bound, use program inequality.

Definition (Inexact Cost)

isBoundedA(e, c) :=
∑
a:A

(e ≤ stepc(ret(a)))

Example (Insertion Sort)

For all l : list(nat), we have isBounded(isort l , |l |2).

8



≤ Equality vs. Inequality

Equality =

• reflexive

• transitive

• symmetric

• congruence:

a = a′ implies f (a) = f (a′)

• pointwise on functions

Inequality ≤

• reflexive

• transitive

• N/A

• monotone:

a ≤ a′ implies f (a) ≤ f (a′)

• pointwise on functions

Compositional cost analysis via inequality reasoning.

9



≤ Equality vs. Inequality

Equality =

• reflexive

• transitive

• symmetric

• congruence:

a = a′ implies f (a) = f (a′)

• pointwise on functions

Inequality ≤

• reflexive

• transitive

• N/A

• monotone:

a ≤ a′ implies f (a) ≤ f (a′)

• pointwise on functions

Compositional cost analysis via inequality reasoning.

9



≤ Reasoning About ≤

Example (List Insert)

insert : nat→ list(nat)→ F(list(nat))

insert x [] = ret(x :: [])

insert x (y :: ys) =

bind b ← step1(x ≤? y) in

if b then ret(x :: y :: ys) else

bind ys ′ ← insert x ys in ret(y :: ys ′)

Theorem (Closed Form Bound)

insert ≤ λx . λl . step|l |(ret(insertspec x l))

10



≤ Reasoning About ≤

Example (List Insert)

insert : nat→ list(nat)→ F(list(nat))

insert x [] = ret(x :: [])

insert x (y :: ys) =

bind b ← step1(x ≤? y) in

if b then ret(x :: y :: ys) else

bind ys ′ ← insert x ys in ret(y :: ys ′)

Theorem (Closed Form Bound)

insert ≤ λx . λl . step|l |(ret(insertspec x l))

10



≤ Reasoning About ≤

Theorem (Closed Form Bound)

insert ≤ λx . λl . step|l |(ret(insertspec x l))

Proof Excerpt.

begin

step1(bind ys ′ ← insert x ys in ret(x :: ys ′))

≤⟨ monotonicity, IH ⟩
step1(bind ys ′ ← step|ys|(ret(insertspec x ys)) in ret(x :: ys ′))

=⟨⟩
step1+|ys|(ret(y :: insertspec x ys))

=⟨⟩
step|y ::ys|(ret(insertspec x ys))

■ 11



φ Extensional Phase [Sterling and Harper, 2021, Sterling, 2021]

Definition (Extensional Phase)

Proposition ext for isolating behavior. If ext holds:

• C ∼= 1

• a ≤ a′ implies a = a′

Modality #A := (ext→ A) isolates behavioral part of A.

Corollary (Noninterference)

If #A ∼= 1, then every function A→ #B is constant.

Cost does not impact behavior.

12



φ Extensional Phase [Sterling and Harper, 2021, Sterling, 2021]

Definition (Extensional Phase)

Proposition ext for isolating behavior. If ext holds:

• C ∼= 1

• a ≤ a′ implies a = a′

Modality #A := (ext→ A) isolates behavioral part of A.

Corollary (Noninterference)

If #A ∼= 1, then every function A→ #B is constant.

Cost does not impact behavior.

12



φ Cost Removal [Niu et al., 2022]

Corollary (Cost Removal)

If ext holds, then C ∼= 1. So, every c : C equals 0:

stepc(e) = step0(e) = e

Example

If ext holds, then isort = msort.

13



φ Cost Removal [Niu et al., 2022]

Corollary (Cost Removal)

If ext holds, then C ∼= 1. So, every c : C equals 0:

stepc(e) = step0(e) = e

Example

If ext holds, then isort = msort.

13



Effects



Effects in decalf [Plotkin and Power, 2002]

decalf supports algebraic effects beyond cost.

Examples:

• errors

• nondeterminism

• probabilistic choice

• global state

14



Probabilistic Choice

Definition (Biased Coin Flip)

Γ ⊢ p : Q[0,1] Γ ⊢ e0 : X Γ ⊢ e1 : X

Γ ⊢ flipp(e0, e1) : X

flipp(e0, e1) = flip1−p(e1, e0)

flipp(e, e) = e

...

stepc(flipp(e0, e1)) = flipp(step
c(e0), step

c(e1))

15



Randomized Quicksort [Hoare, 1961, Hoare, 1962]

Example

Randomized parallel quicksort:

qsort : list(nat)→ F(list(nat))

Benign randomization; same value always returned. So:

qsort ≤ λl . step|l |
2
(ret(sortspec l))

Proof by induction.

Corollary (Correctness)

#(qsort = λl . ret(sortspec l))

16



Randomized Quicksort [Hoare, 1961, Hoare, 1962]

Example

Randomized parallel quicksort:

qsort : list(nat)→ F(list(nat))

Benign randomization; same value always returned. So:

qsort ≤ λl . step|l |
2
(ret(sortspec l))

Proof by induction.

Corollary (Correctness)

#(qsort = λl . ret(sortspec l))

16



Random Sublist

Example (Random Sublist)

sublist : list(nat)→ F(list(nat))

sublist [] = ret([])

sublist (x :: xs) =

bind xs ′ ← sublist xs in

flip½(ret(xs
′), step1(ret(x :: xs ′)))

Example (Binomial Cost)

binomial : nat→ F(1)

binomial zero = ret(⋆)

binomial (suc(n)) =

flip½(binomial n, step1(binomial n))

17



Random Sublist

Example (Random Sublist)

sublist : list(nat)→ F(list(nat))

sublist [] = ret([])

sublist (x :: xs) =

bind xs ′ ← sublist xs in

flip½(ret(xs
′), step1(ret(x :: xs ′)))

Example (Binomial Cost)

binomial : nat→ F(1)

binomial zero = ret(⋆)

binomial (suc(n)) =

flip½(binomial n, step1(binomial n))

17



Random Sublist Analysis

Definition (Result Erasure)

∥−∥ : F(A)→ F(1)

∥e∥ = e ; ret(⋆)

Theorem (Random Sublist Cost)

λl . ∥sublist l∥ = λl . binomial |l |

≤ λl . step|l |(ret(⋆))

18



Random Sublist Analysis

Definition (Result Erasure)

∥−∥ : F(A)→ F(1)

∥e∥ = e ; ret(⋆)

Theorem (Random Sublist Cost)

λl . ∥sublist l∥ = λl . binomial |l |

≤ λl . step|l |(ret(⋆))

18



Random Sublist Analysis

Definition (Result Erasure)

∥−∥ : F(A)→ F(1)

∥e∥ = e ; ret(⋆)

Theorem (Random Sublist Cost)

λl . ∥sublist l∥ = λl . binomial |l |
≤ λl . step|l |(ret(⋆))

18



List Map

Example (List Map)

map : U(A→ F(B))→ list(A)→ F(list(B))

map f [] = ret([])

map f (x :: xs) =

bind ys ← map f xs in

bind y ← f x in

ret(y :: ys)

If f can perform arbitrary effects, there’s no hope for a succinct, informative bound!

19



List Map Bounds

Theorem (Trivial Bound)

Always, map ≤ map.

Theorem (Pure Bound)

If ∥f x∥ ≤ stepc(ret(⋆)), then

∥map f l∥ ≤ stepc|l |(ret(⋆)).

Theorem (Randomized Bound)

If ∥f x∥ ≤ binomial n, then

∥map f l∥ ≤ binomial (n|l |).

20



List Map Bounds

Theorem (Trivial Bound)

Always, map ≤ map.

Theorem (Pure Bound)

If ∥f x∥ ≤ stepc(ret(⋆)), then

∥map f l∥ ≤ stepc|l |(ret(⋆)).

Theorem (Randomized Bound)

If ∥f x∥ ≤ binomial n, then

∥map f l∥ ≤ binomial (n|l |).

20



List Map Bounds

Theorem (Trivial Bound)

Always, map ≤ map.

Theorem (Pure Bound)

If ∥f x∥ ≤ stepc(ret(⋆)), then

∥map f l∥ ≤ stepc|l |(ret(⋆)).

Theorem (Randomized Bound)

If ∥f x∥ ≤ binomial n, then

∥map f l∥ ≤ binomial (n|l |).

20



Semantics



Inequality via an Interval [Hyland, 1991, Phoa, 1991]

Definition (Path Relation)

Let (I, 0, 1) be an interval. Then, the path relation x ⊑A y is:

∃p : I→ A. (p 0 = x) ∧ (p 1 = y)

Goal

□✓ reflexive

□ transitive

□✓ monotone: a ⊑A a′ implies f (a) ⊑B f (a′)

□ pointwise on functions

□ extensionally discrete: #(x ⊑A y) implies #(x = y)

21



Inequality via an Interval [Hyland, 1991, Phoa, 1991]

Definition (Path Relation)

Let (I, 0, 1) be an interval. Then, the path relation x ⊑A y is:

∃p : I→ A. (p 0 = x) ∧ (p 1 = y)

Goal

□✓ reflexive

□ transitive

□✓ monotone: a ⊑A a′ implies f (a) ⊑B f (a′)

□ pointwise on functions

□ extensionally discrete: #(x ⊑A y) implies #(x = y)
21



Inequality via an Interval [Hyland, 1991, Phoa, 1991]

Extensional Discreteness

Require that #I ∼= 1.

Under ext, any map I→ A is constant, so x ⊑A y is x = y .

Goal

□✓ reflexive

□ transitive

□✓ monotone: a ⊑A a′ implies f (a) ⊑B f (a′)

□ pointwise on functions

□ extensionally discrete: #(x ⊑A y) implies #(x = y)
21



Inequality via an Interval [Hyland, 1991, Phoa, 1991]

Extensional Discreteness

Require that #I ∼= 1.

Under ext, any map I→ A is constant, so x ⊑A y is x = y .

Goal

□✓ reflexive

□ transitive

□✓ monotone: a ⊑A a′ implies f (a) ⊑B f (a′)

□ pointwise on functions

□✓ extensionally discrete: #(x ⊑A y) implies #(x = y)
21



Inequality via an Interval [Hyland, 1991, Phoa, 1991]

Transitivity and Pointwise Ordering

Path relation x ⊑A y is not transitive/pointwise on all A. So, isolate a class of A’s

(reflective subuniverse) for which it is.

Goal

□✓ reflexive

□ transitive

□✓ monotone: a ⊑A a′ implies f (a) ⊑B f (a′)

□ pointwise on functions

□✓ extensionally discrete: #(x ⊑A y) implies #(x = y)
21



Inequality via an Interval [Hyland, 1991, Phoa, 1991]

Transitivity and Pointwise Ordering

Path relation x ⊑A y is not transitive/pointwise on all A. So, isolate a class of A’s

(reflective subuniverse) for which it is.

Goal

□✓ reflexive

□✓ transitive

□✓ monotone: a ⊑A a′ implies f (a) ⊑B f (a′)

□✓ pointwise on functions

□✓ extensionally discrete: #(x ⊑A y) implies #(x = y)
21



A Non-Trivial Model

Axioms

1. Interval I,

2. discrete type N,

3. proposition ext,

4. and #(I ∼= 1).

Example (Augmented Simplicial Sets)

Simplicial sets, but where initial object [−1] is added to the simplex category.

I := y[1]

ext := y[−1]

22



A Non-Trivial Model

Axioms

1. Interval I,

2. discrete type N,

3. proposition ext,

4. and #(I ∼= 1).

Example (Augmented Simplicial Sets)

Simplicial sets, but where initial object [−1] is added to the simplex category.

I := y[1]

ext := y[−1]

22



Cost Model as a Directed QIT

Example (Cost Model ω as a QIT)

data ω where

zero : ω

suc : ω → ω

: (n : ω)→ n ⊑ω suc n

Theorem (C := ω is a Valid Cost Model)

#(ω ∼= 1)

23



Cost Model as a Directed QIT

Example (Cost Model ω as a QIT)

data ω where

zero : ω

suc : ω → ω

: (n : ω)→ n ⊑ω suc n

Theorem (C := ω is a Valid Cost Model)

#(ω ∼= 1)

23



Conclusion



Future Work

Amortized Analysis [Grodin and Harper, 2023]

Amortized upper bounds (using coinduction)?

Abstraction

Abstract data types and cost signatures? Separating cost from correctness?

Parallelism and Effects

Effects in parallel (commutative)? Non-algebraic effects (e.g., unbounded recursion)?

Advanced Probabilistic Analysis

Expected/with-high-probability cost analysis?

24



Conclusion

Contribution

calf does synthetic cost analysis at F(−) types. decalf adds:

� support for effects and higher-order programs and

≤ program inequality for inexact bounds

φ harmonious with extensional reasoning.

Justification

1. Topos-theoretically via augmented simplicial sets, and

2. practically via full-scale examples embedded in Agda.

25



Conclusion

Contribution

calf does synthetic cost analysis at F(−) types. decalf adds:

� support for effects and higher-order programs and

≤ program inequality for inexact bounds

φ harmonious with extensional reasoning.

Justification

1. Topos-theoretically via augmented simplicial sets, and

2. practically via full-scale examples embedded in Agda.

25



References i

Danielsson, N. A. (2008).

Lightweight semiformal time complexity analysis for purely functional data

structures.

In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’08, page 133–144, New York, NY,

USA. Association for Computing Machinery.

Grodin, H. and Harper, R. (2023).

Amortized Analysis via Coinduction.

In Baldan, P. and de Paiva, V., editors, 10th Conference on Algebra and Coalgebra

in Computer Science (CALCO 2023), volume 270 of Leibniz International

26



References ii

Proceedings in Informatics (LIPIcs), pages 23:1–23:6, Dagstuhl, Germany. Schloss

Dagstuhl – Leibniz-Zentrum für Informatik.

Hoare, C. A. R. (1961).

Algorithm 64: Quicksort.

Communications of the ACM, 4(7):321.

Hoare, C. A. R. (1962).

Quicksort.

The Computer Journal, 5(1):10–16.

27



References iii

Hyland, J. M. E. (1991).

First steps in synthetic domain theory.

In Carboni, A., Pedicchio, M. C., and Rosolini, G., editors, Category Theory, pages

131–156, Berlin, Heidelberg. Springer Berlin Heidelberg.

Levy, P. B. (2003).

Adjunction models for call-by-push-value with stacks.
Electronic Notes in Theoretical Computer Science, 69:248–271.
CTCS’02, Category Theory and Computer Science.

28



References iv

Licata, D. R. and Harper, R. (2011).

2-dimensional directed type theory.
Electronic Notes in Theoretical Computer Science, 276:263–289.
Twenty-seventh Conference on the Mathematical Foundations of Programming Semantics

(MFPS XXVII).

Niu, Y., Sterling, J., Grodin, H., and Harper, R. (2022).

A cost-aware logical framework.

Proceedings of the ACM on Programming Languages, 6(POPL).

Phoa, W. (1991).

Domain Theory in Realizability Toposes.

PhD thesis, University of Edinburgh.

29



References v

Plotkin, G. D. and Power, J. (2002).

Notions of computation determine monads.

In Proceedings of the 5th International Conference on Foundations of Software

Science and Computation Structures, pages 342–356, Berlin, Heidelberg.

Springer-Verlag.

Riehl, E. and Shulman, M. (2017).

A type theory for synthetic ∞-categories.

Higher Structures, 1:147–224.

30



References vi

Sterling, J. (2021).

First Steps in Synthetic Tait Computability: The Objective Metatheory of

Cubical Type Theory.
PhD thesis, Carnegie Mellon University.
Version 1.1, revised May 2022.

Sterling, J. and Harper, R. (2021).

Logical relations as types: Proof-relevant parametricity for program

modules.

Journal of the ACM, 68(6).

31


	Core Language
	Effects
	Semantics
	Conclusion

