Abstraction Functions as Types

Modular Verification of Cost and Behavior in Dependent Type Theory

Harrison Grodin, Runming Li, and Robert Harper
POPL 2026

Carnegie Mellon University

motivation

record PREQUEUE where
X : Type
empty : 1 — X
enqueue : N — X — X
dequeue : X — N x X

LQ : PREQUEUE

LQ.X =LisT N

LQ-empty () =]
LQ.enqueue n | :== | ++ [n]
LQ.dequeue [] :== (0,[])
LQ.dequeue (n:: 1) == (n,I)

LQ : PREQUEUE

LQ.X =LisT N

LQ-empty () =]
LQ.enqueue n | :== | ++ [n]
LQ.dequeue [] :== (0,[])
LQ.dequeue (n:: 1) == (n,I)

BQ : PREQUEUE

BQ.X := ListT N x LisT N
BQ.empty () := ([I, 1)

BQ.enqueue n (h, k) = (n:: h,h)
BQ.dequeue (h,n :: hb) = n,(h, k)

BQ.dequeue (h,[]) =...reverse | ...

When a programmer makes use of an abstract data object,
he is
which that object exhibits. ..

Liskov and Zilles (1974)

Modular verification?

c1 & :(Q: PREQUEUE) — N x Q.X
a1 Q = Q.empty () > Q.enqueue 1> Q.enqueue 2> Q.dequeue
e Q = (1, Q.empty () > Q.enqueue 2)

Modular verification?

c1 & :(Q: PREQUEUE) — N x Q.X
a1 Q = Q.empty () > Q.enqueue 1> Q.enqueue 2> Q.dequeue
e Q = (1, Q.empty () > Q.enqueue 2)

Theorem?
For all queue implementations @ : PREQUEUE, ¢; @ = & Q.

Modular verification?

¢ & (Q: PREQUEUE) — N x Q.X
a1 Q = Q.empty () > Q.enqueue 1> Q.enqueue 2> Q.dequeue
e Q = (1, Q.empty () > Q.enqueue 2)

Theorem?

For all queue implementations @ : PREQUEUE, ¢; @ = & Q.

Example
Indeed, a1 LQ = (1,[2]) = o LQ.

Modular verification?

¢ & (Q: PREQUEUE) — N x Q.X
a1 Q = Q.empty () > Q.enqueue 1> Q.enqueue 2> Q.dequeue
e Q = (1, Q.empty () > Q.enqueue 2)

Theorem?

For all queue implementations @ : PREQUEUE, ¢; @ = & Q.

Example
Indeed, a1 LQ = (1,[2]) = o LQ.

Counterexample

Alas, ¢ BQ = (1, ([1,[2])) # (1, ({21 11)) = e BQ.

Semantic modularity

Observation

Efficient implementations rarely satisfy verification-level properties.

For example, implementing dictionaries as balanced trees, union is not

e associative,
e commutative,

because the exact tree shape will not be the same.

Semantic modularity

Observation

Efficient implementations rarely satisfy verification-level properties.
For example, implementing dictionaries as balanced trees, union is not
e associative,
e commutative,
e ...
because the exact tree shape will not be the same.

Syntactic vs. Semantic Modularity
In the interest of practicality, simple programming languages include tools for
modularity using syntactic approximations (e.g., existential types).

For verification, we need a semantic notion of modularity. 5

How can we reconcile
with

abstraction functions

Abstraction Functions

For [proving correctness of BQ.enqueue]. . . define the relationship between the
abstract space [LQ.X] in which [LQ.enqueue] is written, and the space [BQ.X]
of the concrete representation. . . by giving a function [o.: BQ.X — LQ.X]...

Hoare (1972)

Abstraction Functions

For [proving correctness of BQ.enqueue]. . . define the relationship between the
abstract space [LQ.X] in which [LQ.enqueue] is written, and the space [BQ.X]
of the concrete representation. . . by giving a function [o.: BQ.X — LQ.X]...

Hoare (1972)

BQ.enqueue n BQ.dequeue
_— _—

1Py pa X BQ.X BQ.X BQ.X N x BQ.X

| b o e

1 —— LQ.X LRAX ——— LQR.X LRX —— Nx LQ.X
LQ.empty LQ.enqueue n LQ.dequeue

Abstraction Functions

For [proving correctness of BQ.enqueue]. . . define the relationship between the
abstract space [LQ.X] in which [LQ.enqueue] is written, and the space [BQ.X]
of the concrete representation. . . by giving a function [o.: BQ.X — LQ.X]...

Hoare (1972)

BQ.enqueue n BQ.dequeue
_— _—

1Py pa X BQ.X BQ.X BQ.X N x BQ.X

| b o e

— LQ.X LRAX ——— LQR.X LRX —— Nx LQ.X
LQ.empty LQ.enqueue n LQ.dequeue

a:BR.X — LQA.X
Ct(/l, /2) = b+ rev(ll)

Verification, up to abstraction

1 & (Q: PREQUEUE) —» N x Q.X
1 Q = Q.empty () > Q.enqueue 1> Q.enqueue 2> Q.dequeue
e Q = (1, Q.empty () > Q.enqueue 2)

Remark

Even though ¢ BQ = (1, ([l [2])) 7 (1, ([2]. 1)) = 2 BQ,

a([l,[2]) = [2] = (2], [D)-

Verification, up to abstraction

1 & (Q: PREQUEUE) —» N x Q.X
1 Q = Q.empty () > Q.enqueue 1> Q.enqueue 2> Q.dequeue
e Q = (1, Q.empty () > Q.enqueue 2)

Remark
Even though ¢; BQ = (1, ([], [2])) # (1, ([2].[])) = > BQ,

a([l,[2]) = [2] = (2], [D)-

Observation
Client-side verification of BQ happens at the level of LQ using a.

BQ.X
Build la into a type.
LQ.X

BQR.X

LQ.X

BLQ.X

1 ——

1 et LQ empty

BLQ

1

BQ.empty

BQR.X

lo

LQ.X

Y81 Q.X

BQ.X BQ.enqueue n BQ.X

o| lo
LQX ———— LQ.X

LQ.enqueue n

BLQ@.enqueue n
_—

BLQ.X BLQ.X

the abstract phase

The abstract phase

Definition

The abstract phase is a proposition, abs.

When abs holds (i.e., is in the context), we are looking at the abstract interface.

The abstract phase

Definition
The abstract phase is a proposition, abs.

When abs holds (i.e., is in the context), we are looking at the abstract interface.

Goal
Abstractly, want BLQ.X = LQ.X.

BQR.X

la

LQ.X

1

BQ.empty
—_—

——
LQ.empty

BQR.X

la

LQ.X

BQ.X

|

LQ.X

BQ.enqueue n
—_—

—
LQ.enqueue n

BQR.X

lo

LQ.X

10

Modalities and gluing

Definition
Definable using abs,
e the concrete modality @ marks data as private (available for efficiency), and

e the abstract modality O marks data as public (available for verification).

11

Modalities and gluing

Definition
Definable using abs,
e the concrete modality @ marks data as private (available for efficiency), and

e the abstract modality O marks data as public (available for verification).
Definition (gluing)

BLQ.X = {(bs, ;) : ®(BQR.X) x O(LQ.X) | map,(n, o @)(bs) = ne(ls)}

11

Modalities and gluing

Definition
Definable using abs,
e the concrete modality @ marks data as private (available for efficiency), and

e the abstract modality O marks data as public (available for verification).
Definition (gluing)

BLQ.X = {(bs, ;) : ®(BQR.X) x O(LQ.X) | map,(n, o @)(bs) = ne(ls)}

Lemma
Abstractly, ®(BQ.X) =1 and O(LQ.X) = LQ.X.

11

Modalities and gluing

Definition
Definable using abs,

e the concrete modality @ marks data as private (available for efficiency), and

e the abstract modality O marks data as public (available for verification).
Definition (gluing)
BLQ.X = {(be, ,) : @(BQ.X) x O(LQ.X) | map,(1no © a)(be) = 1 ()}
Lemma
Abstractly, @(BQ.X) =1 and O(LQ.X) = LQ.X.
Theorem

Abstractly, BLQ.X = {((),/) : 1 x LQ.X |) = ()} = LQ.X.
11

Programming with a phased implementation type

BLQ.empty : 1 — BLQ.X

12

Programming with a phased implementation type

BLQ.empty : 1 — {(be, /o) : ®(BQ.X) x O(LQ.X) | map, (1o ©)(be) = 1e(l)}

12

Programming with a phased implementation type

BLQ.empty : 1 — {(be, /o) : ®(BQ.X) x O(LQ.X) | map, (1o ©)(be) = 1e(l)}
BLQ.empty () = (7a(BQ-empty ()), (L @.cmpty ()))

12

Programming with a phased implementation type

BLQ.empty : 1 — {(be,) : ®(BQ.X) x O(LQ.X) | map(no © &)(be) = ne(l)}
BLQ.empty () i= (1(BQ.empty (), 70(LQ-empty ()

To show

map, (7o © a)(ne(BQ.empty ())) = 1e(1o(LQ.empty ()))

12

Programming with a phased implementation type

BLQ.empty : 1 — {(be, /o) : ®(BQ.X) x O(LQ.X) | map, (1o ©)(be) = 1e(l)}
BLQ.empty () = (7a(BQ-empty ()), (L @.cmpty ()))

To show

Ne (110 ((BQ.empty ()))) = ne(no(LQ-empty ()))

12

Programming with a phased implementation type

BLQ.empty : 1 — {(be, /o) : ®(BQ.X) x O(LQ.X) | map, (1o ©)(be) = 1e(l)}
BLQ.empty () = (7a(BQ-empty ()), (L @.cmpty ()))

To show
e (Mo((BQ-empty ()))) = (1o (LQ-empty ()))
1BQ.emptyBQ.)<
it suffices to show that a(BQ.empty ()) = LQ.empty (): H la
LQ.X

S —
LQ.empty

12

noninterference and modularity

“The ":...the correct
working. . . can be established by taking. .. into account [the]
, and not the particulars of [the]
interior construction.

Dijkstra (1965)

Noninterference

Definition (queue specification type)

QUEUE = {Q : PREQUEUE | abs — (Q = LQ)}

13

Noninterference

Definition (queue specification type)

QUEUE = {Q : PREQUEUE | abs — (Q = LQ)}

Example
BLQ : QUEUE, because abstractly, BLQ = LQ.

13

Noninterference

Definition (queue specification type)

QUEUE = {Q : PREQUEUE | abs — (Q = LQ)}

Example
BLQ : QUEUE, because abstractly, BLQ = LQ.

c1 & :(Q:QUEUE) —» N x Q.X

c1 Q = Q.empty () > Q.enqueue 1> Q.enqueue 2> Q.dequeue
e Q = (1, Q.empty () > Q.enqueue 2)

13

Noninterference

Definition (queue specification type)
QUEUE = {Q : PREQUEUE | abs — (Q = LQ)}

Example
BLQ : QUEUE, because abstractly, BLQ = LQ.

c1 & :(Q:QUEUE) —» N x Q.X
c1 Q = Q.empty () > Q.enqueue 1> Q.enqueue 2> Q.dequeue
e Q = (1, Q.empty () > Q.enqueue 2)

Theorem
For all Q : QUEUE, have abstractly, c1(Q) = c1(LQ) = c2(LQ) = c2(Q).

13

cost analysis

You cannot have interchangeable modules unless these
modules share similar complexity behavior. ..

Stepanov (1995)

Cost analysis in dependent type theory

Calf
Calf is a dependent type theory for cost analysis with a monadic cost effect.

Cost is an effect: charge(c)(—) records c : C units of cost.

14

Cost analysis in dependent type theory

Calf
Calf is a dependent type theory for cost analysis with a monadic cost effect.

Cost is an effect: charge(c)(—) records c : C units of cost.

Nkv:X Nc:C M'=e: M(X)
[+ ret(v) : M(X) I - charge(c)(e) : M(X)

14

Cost analysis in dependent type theory

Calf

Calf is a dependent type theory for cost analysis with a monadic cost effect.

Cost is an effect: charge(c)(—) records c : C units of cost.

Nkv:X Nc:C M'=e: M(X)
[+ ret(v) : M(X) I - charge(c)(e) : M(X)

Decalf
Decalf extends Calf with inequality of costs (simple directed type theory).

e < €’ means e and e’ compute the same data, but e takes less-or-equal cost.

14

record PREQUEUE where
X : Type
empty : 1 — M(X)
enqueue : N — X — M(X)
dequeue : X — M(N x X)

15

record PREQUEUE where
X : Type
empty : 1 — M(X)
enqueue : N — X — M(X)
dequeue : X — M(N x X)

BQ : PREQUEUE

BQ.X = LisT N x LisT N

BQempty () = ret([],[])

BQ.enqueue n (h, k) = charge(1)(ret(n :: h, h))
BQ.dequeue (h,n :: k) = ret(n, (h, k))
BQ.dequeue (h,[]) = charge(|hL|)(-- - reverse I - -)

15

LQ.enqueue n | := charge(?)(ret(/ ++ [n]))
L Q.dequeue [] := charge(?)(ret())(0, [])
LQ.dequeue (n :: 1) := charge(?)(ret(n,/))

16

LQ.enqueue n | := charge(?)(ret(/ ++ [n]))
L Q.dequeue [] := charge(?)(ret())(0, [])
LQ.dequeue (n :: 1) := charge(?)(ret(n,/))

BQ.enqueue n
e

BQR.X

al . |Mt

LQX ———— M(LQ.X)

LQ.enqueue n

16

LQ.enqueue n | := charge(1)(ret(/ -+ [n]))
L Q.dequeue [] := charge(?)(ret())(0, [])
LQ.dequeue (n :: 1) := charge(?)(ret(n,/))

BQ.enqueue n
e

BQR.X

al - |Mt

LQX ———— M(LQ.X)

LQ.enqueue n

16

LQ.enqueue n | := charge(1)(ret(/ -+ [n]))
L Q.dequeue [] := charge(?)(ret())(0, [])
LQ.dequeue (n :: 1) := charge(?)(ret(n,/))

BQ.X B 1 \BQ.X) BQ.X Pt \MIN x BQ.X)
al = lM(a al ? lM(NXQ)
LQX ———— M(LQ.X) LQX ——— M(N x LQ.X)

LQ.enqueue n LQ.dequeue

16

LQ.enqueue n | := charge(1)(ret(/ -+ [n]))
L Q.dequeue [] := charge(0)(ret())(0, [])
LQ.dequeue (n :: 1) := charge(|n :: I|)(ret(n,]))

BQ.X B 1 \BQ.X) BQ.X Pt \MIN x BQ.X)
al = lM(a al > lM(NXa)
LQX ———— M(LQ.X) LQX ——— M(N x LQ.X)

LQ.enqueue n LQ.dequeue

16

LQ.enqueue n | := charge(1)(ret(/ -+ [n]))
L Q.dequeue [] := charge(0)(ret())(0, [])
LQ.dequeue (n :: 1) := charge(|n :: I|)(ret(n,]))

BQ.x B3 8 \iBQ.X) BQ.X B, \iN x BQ.X)

al = lM(a al > lM(NXa)

LQX ——— M(LQ.X) LQX ——— 5 M(N x LQ.X)
LQ.enqueue n LQ.dequeue

Observation

This is a common pattern: often, the true cost depends on private details!

16

The sealing effect

I e:M(X) I absF e, : M(X) Mabske<e,
' seal(e; &) : M(X)

17

The sealing effect

I e:M(X) I absF e, : M(X) Mabske<e,
' seal(e; &) : M(X)

Example
g e EE) ,)
| > |
1 charge (3)(ret(x)) M(l)

17

The sealing effect

I e:M(X) I absF e, : M(X) Mabske<e,
' seal(e; &) : M(X)

Example
g e EE) ,)
| > |
1 charge (3)(ret(x)) M(l)

example : 1 — M(1)
example () = seal(charge(2)(ret(x)); charge(3)(ret(x)))

17

BQ.X BQ.dequeue

o >

LQ.X LQ.dequeue M

M(N x BQ.X)

lM(NXa)
(N x LQ.X)

18

BQ.X PIdee \MIN % BQ.X)

al > lM(Nxa)

BLQ.dequeue : BLQ.X — M(N x BLQ.X)
BLQ.dequeue (b, I,) ~ seal(map,(BQ.dequeue)(b,); map,(LQ.dequeue)(l))

see the paper for the real thing!

18

conclusion

Techniques Used
e univalence [Voevodsky]
e synthetic phase distinctions [Sterling and Harper]
e modalities [Rijke, Shulman, Spitters]
e Calf [Grodin, Niu, Sterling, Harper]

19

Techniques Used
e univalence [Voevodsky]
e synthetic phase distinctions [Sterling and Harper]
e modalities [Rijke, Shulman, Spitters]
e Calf [Grodin, Niu, Sterling, Harper]

Related Work

See the paper: we build on a long tradition!

19

Conclusion

e abstract models (like LQ.X) and abstraction functions (like) can be built into
types to realize verification-level properties: semantic modularity

20

Conclusion

e abstract models (like LQ.X) and abstraction functions (like) can be built into
types to realize verification-level properties: semantic modularity

e unobtrusive change: only postulate the phase proposition abs

20

Conclusion

e abstract models (like LQ.X) and abstraction functions (like) can be built into
types to realize verification-level properties: semantic modularity

e unobtrusive change: only postulate the phase proposition abs

e induces concrete @ and abstract O modalities and gluing,
which are used to build

BLQ.X = {(be, I5) : ®(BQ.X) x O(LQ.X) | mapy(no o @)(be) = ne(lo)}

20

Conclusion

e abstract models (like LQ.X) and abstraction functions (like) can be built into
types to realize verification-level properties: semantic modularity

e unobtrusive change: only postulate the phase proposition abs

e induces concrete @ and abstract O modalities and gluing,
which are used to build

BLQ.X = {(be, I5) : ®(BQ.X) x O(LQ.X) | mapy(no o @)(be) = ne(lo)}

e noninterference/modularity principles are rendered as theorems,
enabling modular verification

20

Conclusion

e abstract models (like LQ.X) and abstraction functions (like) can be built into
types to realize verification-level properties: semantic modularity

e unobtrusive change: only postulate the phase proposition abs

e induces concrete @ and abstract O modalities and gluing,
which are used to build

BLQ.X = {(be, I5) : ®(BQ.X) x O(LQ.X) | mapy(no o @)(be) = ne(lo)}

e noninterference/modularity principles are rendered as theorems,
enabling modular verification

e upper-bound cost specifications supported via a phased sealing effect

20

Bonus Slides

Semantics

Semantics (abstract)
Interpreting [abs] := T, then [BLQ.X] = [LQ.X].

Semantics (concrete)
Interpreting [abs] := L, then [BLQ.X] = [BQ.X].

Semantics (presheaf/Kripke semantics on world poset {abs - T})

0 LisT N x LisT N
Interpreting [abs] = J’ , then [BLQ.X] = J’a
1 LisT N

An incomplete list of related work

e Univalent representation independence [Angiuli, Cavallo, Mdrtberg, and Zeuner]

Verification of data structures [Nipkow et al.]

e Ghost code [Owicki and Gries; Filliatre; Sterling]
e Algebraic specification [Sannella and Tarlecki] and views [Wadler]
e Existential types [Mitchell and Plotkin; Reynolds; Sterling] and Hoare logic [Hoare]
roof
ZX:Type F(X) ZSZS P(S) P ZS:S Q(S)
linj projll lprojl
(Zx:Type F(X)) /rep. ind. S - S

IX.F(X) {PH{Q}

The behavioral phase

Definition
The abstract phase [from Calf] is a proposition, beh.

When beh holds, we ignore cost:

Corollary
Behaviorally, charge(c)(e) = e.

Definition (queue specification type, with cost)

QUEUE = {Q : PREQUEUE | beh — (Q = LQ)}

The real dequeue

BLQ.dequeue : BLQ.X — M(N x BLQ.X)
BLQ.dequeue (neb, I,) = seal(impl; spec)
BLQ.dequeue (* _, I,) == spec
where
impl = letret(n, b') = BQ.dequeue binret(n, (neb’, no(a b')))
spec = letret(n, I') = LQ.dequeue (I, -)inret(n, (x _,no!"))

	motivation
	abstraction functions
	the abstract phase
	noninterference and modularity
	cost analysis
	conclusion
	Appendix

