

Abstraction Functions as Types

Modular Verification of Cost and Behavior in Dependent Type Theory

Harrison Grodin, Runming Li, and Robert Harper

POPL 2026

Carnegie Mellon University

motivation

record PREQUEUE **where**

$X : \mathbf{Type}$

$\text{empty} : 1 \rightarrow X$

$\text{enqueue} : \mathbb{N} \rightarrow X \rightarrow X$

$\text{dequeue} : X \rightarrow \mathbb{N} \times X$

$LQ : \text{PREQUEUE}$

$LQ.X := \text{LIST } \mathbb{N}$

$LQ.\text{empty} () := []$

$LQ.\text{enqueue } n \ I := I ++ [n]$

$LQ.\text{dequeue } [] := (0, [])$

$LQ.\text{dequeue } (n :: I) := (n, I)$

$LQ : \text{PREQUEUE}$ $LQ.X := \text{LIST } \mathbb{N}$ $LQ.\text{empty} () := []$ $LQ.\text{enqueue } n \ I := I ++ [n]$ $LQ.\text{dequeue } [] := (0, [])$ $LQ.\text{dequeue } (n :: I) := (n, I)$ $BQ : \text{PREQUEUE}$ $BQ.X := \text{LIST } \mathbb{N} \times \text{LIST } \mathbb{N}$ $BQ.\text{empty} () := ([], [])$ $BQ.\text{enqueue } n \ (l_1, l_2) := (n :: l_1, l_2)$ $BQ.\text{dequeue } (l_1, n :: l_2) := n, (l_1, l_2)$ $BQ.\text{dequeue } (l_1, []) := \dots \text{reverse } l_1 \dots$

When a programmer makes use of an abstract data object,
he is **concerned only with the behavior**
which that object exhibits...

Liskov and Zilles (1974)

Modular verification?

$c_1 \ c_2 : (Q : \text{PREQUEUE}) \rightarrow \mathbb{N} \times Q.X$

$c_1 \ Q := Q.\text{empty} () \triangleright Q.\text{enqueue } 1 \triangleright Q.\text{enqueue } 2 \triangleright Q.\text{dequeue}$

$c_2 \ Q := (1, Q.\text{empty} () \triangleright Q.\text{enqueue } 2)$

Modular verification?

$c_1 \ c_2 : (Q : \text{PREQUEUE}) \rightarrow \mathbb{N} \times Q.X$

$c_1 \ Q := Q.\text{empty} () \triangleright Q.\text{enqueue } 1 \triangleright Q.\text{enqueue } 2 \triangleright Q.\text{dequeue}$

$c_2 \ Q := (1, Q.\text{empty} () \triangleright Q.\text{enqueue } 2)$

Theorem?

For all queue implementations $Q : \text{PREQUEUE}$, $c_1 \ Q = c_2 \ Q$.

Modular verification?

$c_1 \ c_2 : (Q : \text{PREQUEUE}) \rightarrow \mathbb{N} \times Q.X$

$c_1 \ Q := Q.\text{empty} () \triangleright Q.\text{enqueue } 1 \triangleright Q.\text{enqueue } 2 \triangleright Q.\text{dequeue}$

$c_2 \ Q := (1, Q.\text{empty} () \triangleright Q.\text{enqueue } 2)$

Theorem?

For all queue implementations $Q : \text{PREQUEUE}$, $c_1 \ Q = c_2 \ Q$.

Example

Indeed, $c_1 \ LQ = (1, [2]) = c_2 \ LQ$.

Modular verification?

$c_1 \ c_2 : (Q : \text{PREQUEUE}) \rightarrow \mathbb{N} \times Q.X$

$c_1 \ Q := Q.\text{empty} () \triangleright Q.\text{enqueue } 1 \triangleright Q.\text{enqueue } 2 \triangleright Q.\text{dequeue}$

$c_2 \ Q := (1, Q.\text{empty} () \triangleright Q.\text{enqueue } 2)$

Theorem?

For all queue implementations $Q : \text{PREQUEUE}$, $c_1 \ Q = c_2 \ Q$.

Example

Indeed, $c_1 \ LQ = (1, [2]) = c_2 \ LQ$.

Counterexample

Alas, $c_1 \ BQ = (1, ([], [2])) \neq (1, ([2], [])) = c_2 \ BQ$.

Semantic modularity

Observation

Efficient implementations rarely satisfy verification-level properties.

For example, implementing dictionaries as balanced trees, union is not

- associative,
- commutative,
- ...

because the exact tree shape will not be the same.

Semantic modularity

Observation

Efficient implementations rarely satisfy verification-level properties.

For example, implementing dictionaries as balanced trees, union is not

- associative,
- commutative,
- ...

because the exact tree shape will not be the same.

Syntactic vs. Semantic Modularity

In the interest of practicality, simple programming languages include tools for modularity using syntactic approximations (e.g., existential types).

For verification, we need a [semantic](#) notion of modularity.

How can we reconcile
modularity with verification?

abstraction functions

Abstraction Functions

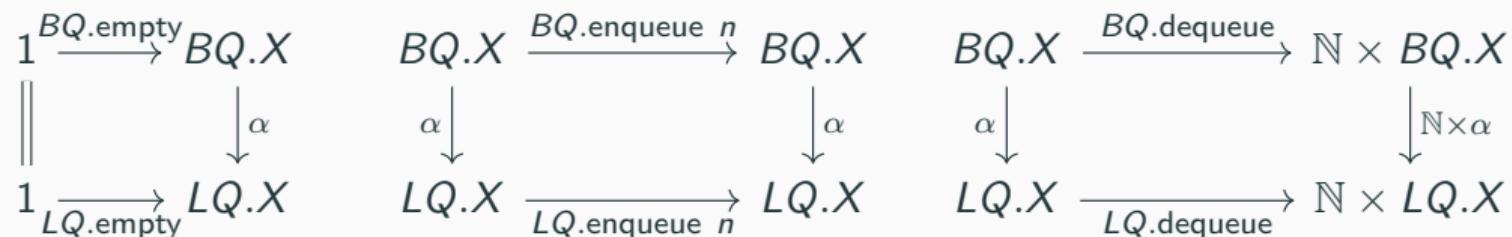
For [proving correctness of $BQ.\text{enqueue}$]... define the relationship between the abstract space $[LQ.X]$ in which $[LQ.\text{enqueue}]$ is written, and the space $[BQ.X]$ of the concrete representation... by giving a function $[\alpha : BQ.X \rightarrow LQ.X]$...

Hoare (1972)

Abstraction Functions

For [proving correctness of $BQ.\text{enqueue}$]... define the relationship between the abstract space $[LQ.X]$ in which $[LQ.\text{enqueue}]$ is written, and the space $[BQ.X]$ of the concrete representation... by giving a function $[\alpha : BQ.X \rightarrow LQ.X]$...

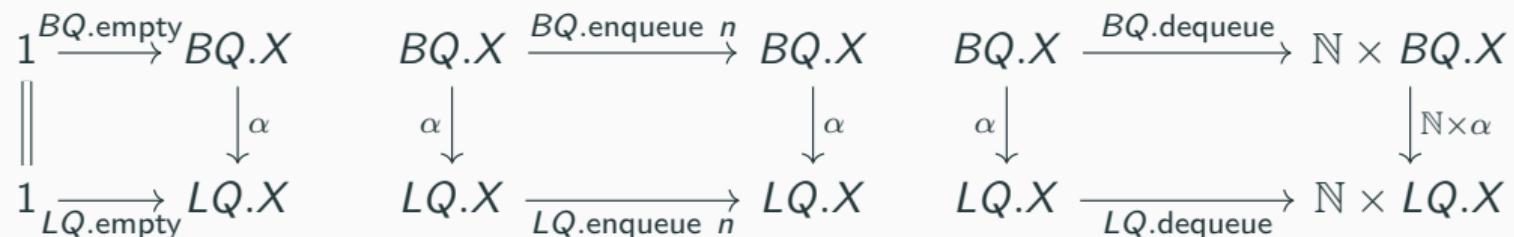
Hoare (1972)



Abstraction Functions

For [proving correctness of $BQ.\text{enqueue}$]... define the relationship between the abstract space $[LQ.X]$ in which $[LQ.\text{enqueue}]$ is written, and the space $[BQ.X]$ of the concrete representation... by giving a function $[\alpha : BQ.X \rightarrow LQ.X]$...

Hoare (1972)



$$\alpha : BQ.X \rightarrow LQ.X$$

$$\alpha(l_1, l_2) := l_2 + \text{rev}(l_1)$$

Verification, up to abstraction

$c_1 \ c_2 : (Q : \text{PREQUEUE}) \rightarrow \mathbb{N} \times Q.X$

$c_1 \ Q := Q.\text{empty} () \triangleright Q.\text{enqueue } 1 \triangleright Q.\text{enqueue } 2 \triangleright Q.\text{dequeue}$

$c_2 \ Q := (1, Q.\text{empty} () \triangleright Q.\text{enqueue } 2)$

Remark

Even though $c_1 \ BQ = (1, (\underline{[], [2]})) \neq (1, (\underline{[2]}, [])) = c_2 \ BQ$,

$$\alpha(\underline{[], [2]}) = [2] = \alpha(\underline{[2]}, []).$$

Verification, up to abstraction

$c_1 \ c_2 : (Q : \text{PREQUEUE}) \rightarrow \mathbb{N} \times Q.X$

$c_1 \ Q := Q.\text{empty} () \triangleright Q.\text{enqueue } 1 \triangleright Q.\text{enqueue } 2 \triangleright Q.\text{dequeue}$

$c_2 \ Q := (1, Q.\text{empty} ()) \triangleright Q.\text{enqueue } 2$

Remark

Even though $c_1 \ BQ = (1, (\underline{[], [2]})) \neq (1, (\underline{[2]}, [])) = c_2 \ BQ$,

$$\alpha(\underline{[], [2]}) = [2] = \alpha(\underline{[2]}, []).$$

Observation

Client-side verification of BQ happens at the level of LQ using α .

Build $\begin{pmatrix} BQ.X \\ \downarrow \alpha \\ LQ.X \end{pmatrix}$ **into a type.**

$$\begin{array}{c} BQ.X \\ \downarrow \alpha \\ LQ.X \end{array}$$

$$\begin{array}{ccc} 1 & \xrightarrow{BQ.\text{empty}} & BQ.X \\ \parallel & & \downarrow \alpha \\ 1 & \xrightarrow{LQ.\text{empty}} & LQ.X \end{array}$$

$$\begin{array}{ccc} BQ.X & \xrightarrow{BQ.\text{enqueue } n} & BQ.X \\ \alpha \downarrow & & \downarrow \alpha \\ LQ.X & \xrightarrow{LQ.\text{enqueue } n} & LQ.X \end{array}$$

$$\begin{array}{c} BLQ.X \\ 1 \xrightarrow{BLQ.\text{empty}} BLQ.X \end{array}$$

$$\begin{array}{c} BLQ.X \\ 1 \xrightarrow{BLQ.\text{enqueue } n} BLQ.X \end{array}$$

the abstract phase

The abstract phase

Definition

The abstract phase is a proposition, **abs**.

When **abs** holds (i.e., is in the context), we are looking at the abstract interface.

The abstract phase

Definition

The abstract phase is a proposition, **abs**.

When **abs** holds (i.e., is in the context), we are looking at the abstract interface.

Goal

Abstractly, want $BLQ.X = LQ.X$.

$$BQ.X \xrightarrow{\alpha} LQ.X$$

$$1 \xrightarrow{BQ.\text{empty}} BQ.X$$
$$1 \xrightarrow{LQ.\text{empty}} LQ.X$$

$$BQ.X \xrightarrow{BQ.\text{enqueue } n} BQ.X$$
$$LQ.X \xrightarrow{LQ.\text{enqueue } n} LQ.X$$

Definition

Definable using **abs**,

- the *concrete modality* ● marks data as private (available for efficiency), and
- the *abstract modality* ○ marks data as public (available for verification).

Modalities and gluing

Definition

Definable using **abs**,

- the *concrete modality* \bullet marks data as private (available for efficiency), and
- the *abstract modality* \circ marks data as public (available for verification).

Definition (gluing)

$$BLQ.X := \{(b_\bullet, l_\circ) : \bullet(BQ.X) \times \circ(LQ.X) \mid \text{map}_\bullet(\eta_\circ \circ \alpha)(b_\bullet) = \eta_\bullet(l_\circ)\}$$

Modalities and gluing

Definition

Definable using **abs**,

- the *concrete modality* \bullet marks data as private (available for efficiency), and
- the *abstract modality* \circ marks data as public (available for verification).

Definition (gluing)

$$BLQ.X := \{(b_\bullet, l_\circ) : \bullet(BQ.X) \times \circ(LQ.X) \mid \text{map}_\bullet(\eta_\circ \circ \alpha)(b_\bullet) = \eta_\bullet(l_\circ)\}$$

Lemma

Abstractly, $\bullet(BQ.X) = 1$ and $\circ(LQ.X) = LQ.X$.

Modalities and gluing

Definition

Definable using **abs**,

- the *concrete modality* \bullet marks data as private (available for efficiency), and
- the *abstract modality* \circlearrowright marks data as public (available for verification).

Definition (gluing)

$$BLQ.X := \{(b_\bullet, l_\circ) : \bullet(BQ.X) \times \circlearrowright(LQ.X) \mid \text{map}_\bullet(\eta_\circ \circ \alpha)(b_\bullet) = \eta_\bullet(l_\circ)\}$$

Lemma

Abstractly, $\bullet(BQ.X) = 1$ and $\circlearrowright(LQ.X) = LQ.X$.

Theorem

Abstractly, $BLQ.X = \{(((), l) : 1 \times LQ.X \mid () = ())\} = LQ.X$.

Programming with a phased implementation type

$BLQ.empty : 1 \rightarrow BLQ.X$

Programming with a phased implementation type

$$BLQ.\text{empty} : 1 \rightarrow \{(b_\bullet, l_\circ) : \bullet(BQ.X) \times \circ(LQ.X) \mid \text{map}_\bullet(\eta_\circ \circ \alpha)(b_\bullet) = \eta_\bullet(l_\circ)\}$$

Programming with a phased implementation type

$BLQ.empty : 1 \rightarrow \{(b_\bullet, l_\circ) : \bullet(BQ.X) \times \circ(LQ.X) \mid \text{map}_\bullet(\eta_\circ \circ \alpha)(b_\bullet) = \eta_\bullet(l_\circ)\}$

$BLQ.empty () := (\eta_\bullet(BQ.empty()), \eta_\circ(LQ.empty()))$

Programming with a phased implementation type

$BLQ.empty : 1 \rightarrow \{(b_\bullet, l_\circ) : \bullet(BQ.X) \times \circ(LQ.X) \mid \text{map}_\bullet(\eta_\circ \circ \alpha)(b_\bullet) = \eta_\bullet(l_\circ)\}$

$BLQ.empty () := (\eta_\bullet(BQ.empty ()), \eta_\circ(LQ.empty ()))$

To show

$$\text{map}_\bullet(\eta_\circ \circ \alpha)(\eta_\bullet(BQ.empty ())) = \eta_\bullet(\eta_\circ(LQ.empty ()))$$

Programming with a phased implementation type

$BLQ.empty : 1 \rightarrow \{(b_\bullet, l_\circ) : \bullet(BQ.X) \times \circ(LQ.X) \mid \text{map}_\bullet(\eta_\circ \circ \alpha)(b_\bullet) = \eta_\bullet(l_\circ)\}$

$BLQ.empty () := (\eta_\bullet(BQ.empty()), \eta_\circ(LQ.empty))$

To show

$$\eta_\bullet(\eta_\circ(\alpha(BQ.empty))) = \eta_\bullet(\eta_\circ(LQ.empty))$$

Programming with a phased implementation type

$$BLQ.\text{empty} : 1 \rightarrow \{(b_\bullet, l_\circ) : \bullet(BQ.X) \times \circ(LQ.X) \mid \text{map}_\bullet(\eta_\circ \circ \alpha)(b_\bullet) = \eta_\bullet(l_\circ)\}$$

$$BLQ.\text{empty} () := (\eta_\bullet(BQ.\text{empty}()), \eta_\circ(LQ.\text{empty}()))$$

To show

$$\eta_\bullet(\eta_\circ(\alpha(BQ.\text{empty}()))) = \eta_\bullet(\eta_\circ(LQ.\text{empty}()))$$

$$\begin{array}{ccc} 1 & \xrightarrow{BQ.\text{empty}} & BQ.X \\ \parallel & & \downarrow \alpha \\ 1 & \xrightarrow{LQ.\text{empty}} & LQ.X \end{array}$$

it suffices to show that $\alpha(BQ.\text{empty}()) = LQ.\text{empty}()$:

noninterference and modularity

“The principle of non-interference”: . . . the correct working. . . can be established by taking. . . into account [the] exterior specification only, and not the particulars of [the] interior construction.

Dijkstra (1965)

Definition (queue specification type)

$$\text{QUEUE} := \{Q : \text{PREQUEUE} \mid \text{abs} \rightarrow (Q = LQ)\}$$

Definition (queue specification type)

$$\text{QUEUE} := \{Q : \text{PREQUEUE} \mid \text{abs} \rightarrow (Q = LQ)\}$$

Example

$BLQ : \text{QUEUE}$, because **abstractly**, $BLQ = LQ$.

Definition (queue specification type)

$$\text{QUEUE} := \{Q : \text{PREQUEUE} \mid \text{abs} \rightarrow (Q = LQ)\}$$

Example

$BLQ : \text{QUEUE}$, because **abstractly**, $BLQ = LQ$.

$c_1 \ c_2 : (Q : \text{QUEUE}) \rightarrow \mathbb{N} \times Q.X$

$c_1 \ Q := Q.\text{empty} () \triangleright Q.\text{enqueue } 1 \triangleright Q.\text{enqueue } 2 \triangleright Q.\text{dequeue}$

$c_2 \ Q := (1, Q.\text{empty} () \triangleright Q.\text{enqueue } 2)$

Definition (queue specification type)

$$\text{QUEUE} := \{Q : \text{PREQUEUE} \mid \text{abs} \rightarrow (Q = LQ)\}$$

Example

$BLQ : \text{QUEUE}$, because **abstractly**, $BLQ = LQ$.

$$c_1 \ c_2 : (Q : \text{QUEUE}) \rightarrow \mathbb{N} \times Q.X$$

$$c_1 \ Q := Q.\text{empty} \ (\) \triangleright Q.enqueue \ 1 \triangleright Q.enqueue \ 2 \triangleright Q.dequeue$$

$$c_2 \ Q := (1, Q.\text{empty} \ (\) \triangleright Q.enqueue \ 2)$$

Theorem

For all $Q : \text{QUEUE}$, have **abstractly**, $c_1(Q) = c_1(LQ) = c_2(LQ) = c_2(Q)$.

cost analysis

You cannot have interchangeable modules unless these modules share similar complexity behavior... Complexity assertions have to be part of the interface.

Stepanov (1995)

Cost analysis in dependent type theory

Calf

[Calf](#) is a dependent type theory for cost analysis with a monadic cost effect.

Cost is an effect: **charge** $\langle c \rangle(-)$ records $c : \mathbb{C}$ units of cost.

Cost analysis in dependent type theory

Calf

Calf is a dependent type theory for cost analysis with a monadic cost effect.

Cost is an effect: **charge** $\langle c \rangle(-)$ records $c : \mathbb{C}$ units of cost.

$$\frac{\Gamma \vdash v : X}{\Gamma \vdash \mathbf{ret}(v) : \mathbf{M}(X)}$$

$$\frac{\Gamma \vdash c : \mathbb{C} \quad \Gamma \vdash e : \mathbf{M}(X)}{\Gamma \vdash \mathbf{charge}\langle c \rangle(e) : \mathbf{M}(X)}$$

Cost analysis in dependent type theory

Calf

Calf is a dependent type theory for cost analysis with a monadic cost effect.

Cost is an effect: **charge** $\langle c \rangle(-)$ records $c : \mathbb{C}$ units of cost.

$$\frac{\Gamma \vdash v : X}{\Gamma \vdash \mathbf{ret}(v) : \mathbf{M}(X)}$$

$$\frac{\Gamma \vdash c : \mathbb{C} \quad \Gamma \vdash e : \mathbf{M}(X)}{\Gamma \vdash \mathbf{charge}\langle c \rangle(e) : \mathbf{M}(X)}$$

Decalf

Decalf extends Calf with *inequality of costs* (simple directed type theory).

$e \leq e'$ means e and e' compute the same data, but e takes less-or-equal cost.

```
record PREQUEUE where
  X : Type
  empty : 1 → M(X)
  enqueue : N → X → M(X)
  dequeue : X → M(N × X)
```

```
record PREQUEUE where
```

```
  X : Type
```

```
  empty : 1 → M(X)
```

```
  enqueue : N → X → M(X)
```

```
  dequeue : X → M(N × X)
```

```
BQ : PREQUEUE
```

```
BQ.X := LIST N × LIST N
```

```
BQ.empty () := ret([], [])
```

```
BQ.enqueue n (l1, l2) := charge⟨1⟩(ret(n :: l1, l2))
```

```
BQ.dequeue (l1, n :: l2) := ret(n, (l1, l2))
```

```
BQ.dequeue (l1, []) := charge⟨|l1|⟩(⋯ reverse l1⋯)
```

$LQ.enqueue\ n\ l := \mathbf{charge}\langle ? \rangle(\mathbf{ret}(l ++ [n]))$

$LQ.dequeue\ [] := \mathbf{charge}\langle ? \rangle(\mathbf{ret}())(0, [])$

$LQ.dequeue\ (n :: l) := \mathbf{charge}\langle ? \rangle(\mathbf{ret}(n, l))$

$LQ.\text{enqueue } n \mid := \mathbf{charge}\langle ? \rangle(\mathbf{ret}(l \text{ ++ } [n]))$

$LQ.\text{dequeue } [] := \mathbf{charge}\langle ? \rangle(\mathbf{ret}())(0, [])$

$LQ.\text{dequeue } (n :: l) := \mathbf{charge}\langle ? \rangle(\mathbf{ret}(n, l))$

$$\begin{array}{ccc} BQ.X & \xrightarrow{BQ.\text{enqueue } n} & \mathbf{M}(BQ.X) \\ \alpha \downarrow & \text{?} & \downarrow \mathbf{M}(\alpha) \\ LQ.X & \xrightarrow{LQ.\text{enqueue } n} & \mathbf{M}(LQ.X) \end{array}$$

$LQ.\text{enqueue } n \mid := \mathbf{charge}\langle 1 \rangle(\mathbf{ret}(l ++ [n]))$

$LQ.\text{dequeue } [] := \mathbf{charge}\langle ? \rangle(\mathbf{ret}())(0, [])$

$LQ.\text{dequeue } (n :: l) := \mathbf{charge}\langle ? \rangle(\mathbf{ret}(n, l))$

$BQ.X \xrightarrow{BQ.\text{enqueue } n} \mathbf{M}(BQ.X)$

$\alpha \downarrow \quad = \quad \downarrow \mathbf{M}(\alpha)$

$LQ.X \xrightarrow{LQ.\text{enqueue } n} \mathbf{M}(LQ.X)$

$LQ.\text{enqueue } n \mid := \mathbf{charge}\langle 1 \rangle(\mathbf{ret}(l \mathbin{+} [n]))$

$LQ.\text{dequeue } [] := \mathbf{charge}\langle ? \rangle(\mathbf{ret}())(0, [])$

$LQ.\text{dequeue } (n :: l) := \mathbf{charge}\langle ? \rangle(\mathbf{ret}(n, l))$

$$\begin{array}{ccc} BQ.X & \xrightarrow{BQ.\text{enqueue } n} & \mathbf{M}(BQ.X) \\ \alpha \downarrow & = & \downarrow \mathbf{M}(\alpha) \\ LQ.X & \xrightarrow{LQ.\text{enqueue } n} & \mathbf{M}(LQ.X) \end{array} \quad \begin{array}{ccc} BQ.X & \xrightarrow{BQ.\text{dequeue}} & \mathbf{M}(\mathbb{N} \times BQ.X) \\ \alpha \downarrow & ? & \downarrow \mathbf{M}(\mathbb{N} \times \alpha) \\ LQ.X & \xrightarrow{LQ.\text{dequeue}} & \mathbf{M}(\mathbb{N} \times LQ.X) \end{array}$$

$LQ.\text{enqueue } n \ I := \mathbf{charge}\langle 1 \rangle(\mathbf{ret}(I ++ [n]))$

$LQ.\text{dequeue } [] := \mathbf{charge}\langle 0 \rangle(\mathbf{ret}())(0, [])$

$LQ.\text{dequeue } (n :: I) := \mathbf{charge}\langle |n :: I| \rangle(\mathbf{ret}(n, I))$

$$\begin{array}{ccc} BQ.X & \xrightarrow{BQ.\text{enqueue } n} & \mathbf{M}(BQ.X) \\ \alpha \downarrow & = & \downarrow \mathbf{M}(\alpha) \\ LQ.X & \xrightarrow{LQ.\text{enqueue } n} & \mathbf{M}(LQ.X) \end{array} \quad \begin{array}{ccc} BQ.X & \xrightarrow{BQ.\text{dequeue}} & \mathbf{M}(\mathbb{N} \times BQ.X) \\ \alpha \downarrow & \geq & \downarrow \mathbf{M}(\mathbb{N} \times \alpha) \\ LQ.X & \xrightarrow{LQ.\text{dequeue}} & \mathbf{M}(\mathbb{N} \times LQ.X) \end{array}$$

$$LQ.\text{enqueue } n \ I := \mathbf{charge}\langle 1 \rangle(\mathbf{ret}(I ++ [n]))$$
$$LQ.\text{dequeue } [] := \mathbf{charge}\langle 0 \rangle(\mathbf{ret}())(0, [])$$
$$LQ.\text{dequeue } (n :: I) := \mathbf{charge}\langle |n :: I| \rangle(\mathbf{ret}(n, I))$$

$$\begin{array}{ccc} BQ.X & \xrightarrow{BQ.\text{enqueue } n} & \mathbf{M}(BQ.X) \\ \alpha \downarrow & = & \downarrow \mathbf{M}(\alpha) \\ LQ.X & \xrightarrow{LQ.\text{enqueue } n} & \mathbf{M}(LQ.X) \end{array} \quad \begin{array}{ccc} BQ.X & \xrightarrow{BQ.\text{dequeue}} & \mathbf{M}(\mathbb{N} \times BQ.X) \\ \alpha \downarrow & \geq & \downarrow \mathbf{M}(\mathbb{N} \times \alpha) \\ LQ.X & \xrightarrow{LQ.\text{dequeue}} & \mathbf{M}(\mathbb{N} \times LQ.X) \end{array}$$

Observation

This is a common pattern: often, the true cost depends on private details!

The sealing effect

$$\frac{\Gamma \vdash e : \mathbf{M}(X) \quad \Gamma, \mathbf{abs} \vdash e_o : \mathbf{M}(X) \quad \Gamma, \mathbf{abs} \vdash e \leq e_o}{\Gamma \vdash \mathbf{seal}(e; e_o) : \mathbf{M}(X)}$$

The sealing effect

$$\frac{\Gamma \vdash e : \mathbf{M}(X) \quad \Gamma, \mathbf{abs} \vdash e_o : \mathbf{M}(X) \quad \Gamma, \mathbf{abs} \vdash e \leq e_o}{\Gamma \vdash \mathbf{seal}(e; e_o) : \mathbf{M}(X)}$$

Example

$$\begin{array}{ccc} 1 & \xrightarrow{\mathbf{charge}\langle 2 \rangle(\mathbf{ret}(\star))} & \mathbf{M}(1) \\ \parallel & \geq & \parallel \\ 1 & \xrightarrow{\mathbf{charge}\langle 3 \rangle(\mathbf{ret}(\star))} & \mathbf{M}(1) \end{array}$$

The sealing effect

$$\frac{\Gamma \vdash e : \mathbf{M}(X) \quad \Gamma, \mathbf{abs} \vdash e_o : \mathbf{M}(X) \quad \Gamma, \mathbf{abs} \vdash e \leq e_o}{\Gamma \vdash \mathbf{seal}(e; e_o) : \mathbf{M}(X)}$$

Example

$$\begin{array}{ccc} 1 & \xrightarrow{\mathbf{charge}\langle 2 \rangle(\mathbf{ret}(\star))} & \mathbf{M}(1) \\ \parallel & \geq & \parallel \\ 1 & \xrightarrow{\mathbf{charge}\langle 3 \rangle(\mathbf{ret}(\star))} & \mathbf{M}(1) \end{array}$$

example : $1 \rightarrow \mathbf{M}(1)$

example () = $\mathbf{seal}(\mathbf{charge}\langle 2 \rangle(\mathbf{ret}(\star)); \mathbf{charge}\langle 3 \rangle(\mathbf{ret}(\star)))$

$$\begin{array}{ccc}
 BQ.X & \xrightarrow{BQ.\text{dequeue}} & \mathbf{M}(\mathbb{N} \times BQ.X) \\
 \alpha \downarrow & \geq & \downarrow \mathbf{M}(\mathbb{N} \times \alpha) \\
 LQ.X & \xrightarrow{LQ.\text{dequeue}} & \mathbf{M}(\mathbb{N} \times LQ.X)
 \end{array}$$

$$\begin{array}{ccc}
 BQ.X & \xrightarrow{BQ.\text{dequeue}} & \mathbf{M}(\mathbb{N} \times BQ.X) \\
 \alpha \downarrow & \geq & \downarrow \mathbf{M}(\mathbb{N} \times \alpha) \\
 LQ.X & \xrightarrow{LQ.\text{dequeue}} & \mathbf{M}(\mathbb{N} \times LQ.X)
 \end{array}$$

$$BLQ.\text{dequeue} : BLQ.X \rightarrow \mathbf{M}(\mathbb{N} \times BLQ.X)$$

$$BLQ.\text{dequeue} (b_\bullet, l_\circ) \approx \mathbf{seal}(\text{map}_\bullet(BQ.\text{dequeue})(b_\bullet); \text{map}_\circ(LQ.\text{dequeue})(l_\circ))$$

see the paper for the real thing!

conclusion

Techniques Used

- univalence [Voevodsky]
- synthetic phase distinctions [Sterling and Harper]
- modalities [Rijke, Shulman, Spitters]
- Calf [Grodin, Niu, Sterling, Harper]

Techniques Used

- univalence [Voevodsky]
- synthetic phase distinctions [Sterling and Harper]
- modalities [Rijke, Shulman, Spitters]
- Calf [Grodin, Niu, Sterling, Harper]

Related Work

See the paper: we build on a long tradition!

Conclusion

- abstract models (like $LQ.X$) and abstraction functions (like α) can be **built into types** to realize verification-level properties: **semantic modularity**

Conclusion

- abstract models (like $LQ.X$) and abstraction functions (like α) can be **built into types** to realize verification-level properties: **semantic modularity**
- **unobtrusive change**: only postulate the phase proposition **abs**

Conclusion

- abstract models (like $LQ.X$) and abstraction functions (like α) can be **built into types** to realize verification-level properties: **semantic modularity**
- **unobtrusive change**: only postulate the phase proposition **abs**
- induces **concrete** ● and **abstract** ○ modalities and **gluing**, which are used to build

$$BLQ.X := \{(b_\bullet, l_\circ) : \bullet(BQ.X) \times \circ(LQ.X) \mid \text{map}_\bullet(\eta_\circ \circ \alpha)(b_\bullet) = \eta_\bullet(l_\circ)\}$$

Conclusion

- abstract models (like $LQ.X$) and abstraction functions (like α) can be **built into types** to realize verification-level properties: **semantic modularity**
- **unobtrusive change**: only postulate the phase proposition **abs**
- induces **concrete** \bullet and **abstract** \circ **modalities** and **gluing**, which are used to build

$$BLQ.X := \{(b_\bullet, l_\circ) : \bullet(BQ.X) \times \circ(LQ.X) \mid \text{map}_\bullet(\eta_\circ \circ \alpha)(b_\bullet) = \eta_\bullet(l_\circ)\}$$

- **noninterference/modularity** principles are rendered as theorems, enabling **modular verification**

Conclusion

- abstract models (like $LQ.X$) and abstraction functions (like α) can be **built into types** to realize verification-level properties: **semantic modularity**
- **unobtrusive change**: only postulate the phase proposition **abs**
- induces **concrete** ● and **abstract** ○ modalities and **gluing**, which are used to build

$$BLQ.X := \{(b_\bullet, l_\circ) : \bullet(BQ.X) \times \circ(LQ.X) \mid \text{map}_\bullet(\eta_\circ \circ \alpha)(b_\bullet) = \eta_\bullet(l_\circ)\}$$

- **noninterference/modularity** principles are rendered as theorems, enabling **modular verification**
- upper-bound **cost specifications** supported via a phased **sealing effect**

Bonus Slides

Semantics (abstract)

Interpreting $\llbracket \text{abs} \rrbracket := \top$, then $\llbracket BLQ.X \rrbracket = \llbracket LQ.X \rrbracket$.

Semantics (concrete)

Interpreting $\llbracket \text{abs} \rrbracket := \perp$, then $\llbracket BLQ.X \rrbracket = \llbracket BQ.X \rrbracket$.

Semantics (presheaf/Kripke semantics on world poset $\{\text{abs} \vdash \top\}$)

Interpreting $\llbracket \text{abs} \rrbracket := \begin{pmatrix} 0 \\ \downarrow \\ 1 \end{pmatrix}$, then $\llbracket BLQ.X \rrbracket = \begin{pmatrix} \text{LIST } \mathbb{N} \times \text{LIST } \mathbb{N} \\ \downarrow^\alpha \\ \text{LIST } \mathbb{N} \end{pmatrix}$.

An incomplete list of related work

- Univalent representation independence [Angiuli, Cavallo, Mörtberg, and Zeuner]
- Verification of data structures [Nipkow et al.]
- Ghost code [Owicki and Gries; Filliâtre; Sterling]
- Algebraic specification [Sannella and Tarlecki] and views [Wadler]
- Existential types [Mitchell and Plotkin; Reynolds; Sterling] and Hoare logic [Hoare]

$$\begin{array}{ccc} \sum_{X:\text{Type}} F(X) & & \sum_{s:S} P(s) \xrightarrow{\text{proof}} \sum_{s:S} Q(s) \\ \downarrow \text{inj} & & \downarrow \text{proj}_1 \\ \left(\sum_{X:\text{Type}} F(X) \right) / \text{rep. ind.} & & S \xrightarrow{f} S \end{array}$$

$$\exists X. F(X)$$

$$\{P\} f \{Q\}$$

The behavioral phase

Definition

The abstract phase [from Calf] is a proposition, **beh**.

When **beh** holds, we ignore cost:

$$e \leq e' \rightarrow e = e'$$

Corollary

Behaviorally, **charge** $\langle c \rangle(e) = e$.

Definition (queue specification type, with cost)

$$\text{QUEUE} := \{Q : \text{PREQUEUE} \mid \text{beh} \rightarrow (Q = LQ)\}$$

The real dequeue

$BLQ.\text{dequeue} : BLQ.X \rightarrow \mathbf{M}(\mathbb{N} \times BLQ.X)$

$BLQ.\text{dequeue } (\eta_\bullet b, l_\circ) := \mathbf{seal}(\text{impl}; \text{ spec})$

$BLQ.\text{dequeue } (* _, l_\circ) := \text{spec}$

where

$\text{impl} := \mathbf{let} \mathbf{ret}(n, b') = BQ.\text{dequeue } b \mathbf{in} \mathbf{ret}(n, (\eta_\bullet b', \eta_\circ(\alpha \ b')))$

$\text{spec} := \mathbf{let} \mathbf{ret}(n, l') = LQ.\text{dequeue } (l_\circ _) \mathbf{in} \mathbf{ret}(n, (* _, \eta_\circ l'))$