
Abstraction Functions as Types

Modular Verification of Cost and Behavior in Dependent Type Theory

Harrison Grodin, Runming Li, and Robert Harper

POPL 2026

Carnegie Mellon University

motivation

record PreQueue where

X : Type

empty : 1 → X

enqueue : N → X → X

dequeue : X → N× X

2

LQ : PreQueue

LQ.X := List N
LQ.empty () := []

LQ.enqueue n l := l ++ [n]

LQ.dequeue [] := (0, [])

LQ.dequeue (n :: l) := (n, l)

BQ : PreQueue

BQ.X := List N× List N
BQ.empty () := ([], [])

BQ.enqueue n (l1, l2) := (n :: l1, l2)

BQ.dequeue (l1, n :: l2) := n, (l1, l2)

BQ.dequeue (l1, []) := . . . reverse l1 . . .

3

LQ : PreQueue

LQ.X := List N
LQ.empty () := []

LQ.enqueue n l := l ++ [n]

LQ.dequeue [] := (0, [])

LQ.dequeue (n :: l) := (n, l)

BQ : PreQueue

BQ.X := List N× List N
BQ.empty () := ([], [])

BQ.enqueue n (l1, l2) := (n :: l1, l2)

BQ.dequeue (l1, n :: l2) := n, (l1, l2)

BQ.dequeue (l1, []) := . . . reverse l1 . . .

3

When a programmer makes use of an abstract data object,

he is concerned only with the behavior

which that object exhibits. . .

Liskov and Zilles (1974)

3

Modular verification?

c1 c2 : (Q : PreQueue) → N× Q.X

c1 Q := Q.empty () ▷ Q.enqueue 1 ▷ Q.enqueue 2 ▷ Q.dequeue

c2 Q := (1,Q.empty () ▷ Q.enqueue 2)

Theorem?

For all queue implementations Q : PreQueue, c1 Q = c2 Q.

Example

Indeed, c1 LQ = (1, [2]) = c2 LQ.

Counterexample

Alas, c1 BQ = (1, ([], [2])) ̸= (1, ([2], [])) = c2 BQ.

4

Modular verification?

c1 c2 : (Q : PreQueue) → N× Q.X

c1 Q := Q.empty () ▷ Q.enqueue 1 ▷ Q.enqueue 2 ▷ Q.dequeue

c2 Q := (1,Q.empty () ▷ Q.enqueue 2)

Theorem?

For all queue implementations Q : PreQueue, c1 Q = c2 Q.

Example

Indeed, c1 LQ = (1, [2]) = c2 LQ.

Counterexample

Alas, c1 BQ = (1, ([], [2])) ̸= (1, ([2], [])) = c2 BQ.

4

Modular verification?

c1 c2 : (Q : PreQueue) → N× Q.X

c1 Q := Q.empty () ▷ Q.enqueue 1 ▷ Q.enqueue 2 ▷ Q.dequeue

c2 Q := (1,Q.empty () ▷ Q.enqueue 2)

Theorem?

For all queue implementations Q : PreQueue, c1 Q = c2 Q.

Example

Indeed, c1 LQ = (1, [2]) = c2 LQ.

Counterexample

Alas, c1 BQ = (1, ([], [2])) ̸= (1, ([2], [])) = c2 BQ.

4

Modular verification?

c1 c2 : (Q : PreQueue) → N× Q.X

c1 Q := Q.empty () ▷ Q.enqueue 1 ▷ Q.enqueue 2 ▷ Q.dequeue

c2 Q := (1,Q.empty () ▷ Q.enqueue 2)

Theorem?

For all queue implementations Q : PreQueue, c1 Q = c2 Q.

Example

Indeed, c1 LQ = (1, [2]) = c2 LQ.

Counterexample

Alas, c1 BQ = (1, ([], [2])) ̸= (1, ([2], [])) = c2 BQ.

4

Semantic modularity

Observation

Efficient implementations rarely satisfy verification-level properties.

For example, implementing dictionaries as balanced trees, union is not

• associative,

• commutative,

• . . .

because the exact tree shape will not be the same.

Syntactic vs. Semantic Modularity

In the interest of practicality, simple programming languages include tools for

modularity using syntactic approximations (e.g., existential types).

For verification, we need a semantic notion of modularity.

5

Semantic modularity

Observation

Efficient implementations rarely satisfy verification-level properties.

For example, implementing dictionaries as balanced trees, union is not

• associative,

• commutative,

• . . .

because the exact tree shape will not be the same.

Syntactic vs. Semantic Modularity

In the interest of practicality, simple programming languages include tools for

modularity using syntactic approximations (e.g., existential types).

For verification, we need a semantic notion of modularity. 5

How can we reconcile

modularity with verification?

5

abstraction functions

Abstraction Functions

For [proving correctness of BQ.enqueue]. . . define the relationship between the

abstract space [LQ.X] in which [LQ.enqueue] is written, and the space [BQ.X]

of the concrete representation. . . by giving a function [α : BQ.X → LQ.X]. . .

Hoare (1972)

1 BQ.X

1 LQ.X

BQ.empty

α

LQ.empty

BQ.X BQ.X

LQ.X LQ.X

BQ.enqueue n

α α

LQ.enqueue n

BQ.X N× BQ.X

LQ.X N× LQ.X

BQ.dequeue

α N×α

LQ.dequeue

α : BQ.X → LQ.X

α(l1, l2) := l2 ++ rev(l1)

6

Abstraction Functions

For [proving correctness of BQ.enqueue]. . . define the relationship between the

abstract space [LQ.X] in which [LQ.enqueue] is written, and the space [BQ.X]

of the concrete representation. . . by giving a function [α : BQ.X → LQ.X]. . .

Hoare (1972)

1 BQ.X

1 LQ.X

BQ.empty

α

LQ.empty

BQ.X BQ.X

LQ.X LQ.X

BQ.enqueue n

α α

LQ.enqueue n

BQ.X N× BQ.X

LQ.X N× LQ.X

BQ.dequeue

α N×α

LQ.dequeue

α : BQ.X → LQ.X

α(l1, l2) := l2 ++ rev(l1)

6

Abstraction Functions

For [proving correctness of BQ.enqueue]. . . define the relationship between the

abstract space [LQ.X] in which [LQ.enqueue] is written, and the space [BQ.X]

of the concrete representation. . . by giving a function [α : BQ.X → LQ.X]. . .

Hoare (1972)

1 BQ.X

1 LQ.X

BQ.empty

α

LQ.empty

BQ.X BQ.X

LQ.X LQ.X

BQ.enqueue n

α α

LQ.enqueue n

BQ.X N× BQ.X

LQ.X N× LQ.X

BQ.dequeue

α N×α

LQ.dequeue

α : BQ.X → LQ.X

α(l1, l2) := l2 ++ rev(l1)

6

Verification, up to abstraction

c1 c2 : (Q : PreQueue) → N× Q.X

c1 Q := Q.empty () ▷ Q.enqueue 1 ▷ Q.enqueue 2 ▷ Q.dequeue

c2 Q := (1,Q.empty () ▷ Q.enqueue 2)

Remark

Even though c1 BQ = (1, ([], [2])) ̸= (1, ([2], [])) = c2 BQ,

α([], [2]) = [2] = α([2], []).

Observation

Client-side verification of BQ happens at the level of LQ using α.

7

Verification, up to abstraction

c1 c2 : (Q : PreQueue) → N× Q.X

c1 Q := Q.empty () ▷ Q.enqueue 1 ▷ Q.enqueue 2 ▷ Q.dequeue

c2 Q := (1,Q.empty () ▷ Q.enqueue 2)

Remark

Even though c1 BQ = (1, ([], [2])) ̸= (1, ([2], [])) = c2 BQ,

α([], [2]) = [2] = α([2], []).

Observation

Client-side verification of BQ happens at the level of LQ using α.

7

Build

 BQ.X

LQ.X

α

 into a type.

7

BQ.X 1 BQ.X BQ.X BQ.X

LQ.X 1 LQ.X LQ.X LQ.X

BLQ.X 1 BLQ.X BLQ.X BLQ.X

α

BQ.empty

LQ.empty

α

BLQ.empty

LQ.enqueue n

BQ.enqueue n

α α

BLQ.enqueue n

8

the abstract phase

The abstract phase

Definition

The abstract phase is a proposition, abs.

When abs holds (i.e., is in the context), we are looking at the abstract interface.

Goal

Abstractly, want BLQ.X = LQ.X .

9

The abstract phase

Definition

The abstract phase is a proposition, abs.

When abs holds (i.e., is in the context), we are looking at the abstract interface.

Goal

Abstractly, want BLQ.X = LQ.X .

9

BQ.X 1 BQ.X BQ.X BQ.X

LQ.X 1 LQ.X LQ.X LQ.X

α

BQ.empty

α

BQ.enqueue n

α α

LQ.empty LQ.enqueue n

10

Modalities and gluing

Definition

Definable using abs,

• the concrete modality marks data as private (available for efficiency), and

• the abstract modality # marks data as public (available for verification).

Definition (gluing)

BLQ.X := {(b•, l◦) : (BQ.X)×#(LQ.X) | map•(η◦ ◦ α)(b•) = η•(l◦)}

Lemma

Abstractly, (BQ.X) = 1 and #(LQ.X) = LQ.X.

Theorem

Abstractly, BLQ.X = {((), l) : 1× LQ.X | () = ()} = LQ.X.

11

Modalities and gluing

Definition

Definable using abs,

• the concrete modality marks data as private (available for efficiency), and

• the abstract modality # marks data as public (available for verification).

Definition (gluing)

BLQ.X := {(b•, l◦) : (BQ.X)×#(LQ.X) | map•(η◦ ◦ α)(b•) = η•(l◦)}

Lemma

Abstractly, (BQ.X) = 1 and #(LQ.X) = LQ.X.

Theorem

Abstractly, BLQ.X = {((), l) : 1× LQ.X | () = ()} = LQ.X.

11

Modalities and gluing

Definition

Definable using abs,

• the concrete modality marks data as private (available for efficiency), and

• the abstract modality # marks data as public (available for verification).

Definition (gluing)

BLQ.X := {(b•, l◦) : (BQ.X)×#(LQ.X) | map•(η◦ ◦ α)(b•) = η•(l◦)}

Lemma

Abstractly, (BQ.X) = 1 and #(LQ.X) = LQ.X.

Theorem

Abstractly, BLQ.X = {((), l) : 1× LQ.X | () = ()} = LQ.X.

11

Modalities and gluing

Definition

Definable using abs,

• the concrete modality marks data as private (available for efficiency), and

• the abstract modality # marks data as public (available for verification).

Definition (gluing)

BLQ.X := {(b•, l◦) : (BQ.X)×#(LQ.X) | map•(η◦ ◦ α)(b•) = η•(l◦)}

Lemma

Abstractly, (BQ.X) = 1 and #(LQ.X) = LQ.X.

Theorem

Abstractly, BLQ.X = {((), l) : 1× LQ.X | () = ()} = LQ.X.
11

Programming with a phased implementation type

BLQ.empty : 1 → BLQ.X

BLQ.empty () := (η•(BQ.empty ()), η◦(LQ.empty ()))

To show

map•(η◦ ◦ α)(η•(BQ.empty ())) = η•(η◦(LQ.empty ()))

it suffices to show that α(BQ.empty ()) = LQ.empty ():

1 BQ.X

1 LQ.X

BQ.empty

α

LQ.empty

12

Programming with a phased implementation type

BLQ.empty : 1 → {(b•, l◦) : (BQ.X)×#(LQ.X) | map•(η◦ ◦ α)(b•) = η•(l◦)}

BLQ.empty () := (η•(BQ.empty ()), η◦(LQ.empty ()))

To show

map•(η◦ ◦ α)(η•(BQ.empty ())) = η•(η◦(LQ.empty ()))

it suffices to show that α(BQ.empty ()) = LQ.empty ():

1 BQ.X

1 LQ.X

BQ.empty

α

LQ.empty

12

Programming with a phased implementation type

BLQ.empty : 1 → {(b•, l◦) : (BQ.X)×#(LQ.X) | map•(η◦ ◦ α)(b•) = η•(l◦)}
BLQ.empty () := (η•(BQ.empty ()), η◦(LQ.empty ()))

To show

map•(η◦ ◦ α)(η•(BQ.empty ())) = η•(η◦(LQ.empty ()))

it suffices to show that α(BQ.empty ()) = LQ.empty ():

1 BQ.X

1 LQ.X

BQ.empty

α

LQ.empty

12

Programming with a phased implementation type

BLQ.empty : 1 → {(b•, l◦) : (BQ.X)×#(LQ.X) | map•(η◦ ◦ α)(b•) = η•(l◦)}
BLQ.empty () := (η•(BQ.empty ()), η◦(LQ.empty ()))

To show

map•(η◦ ◦ α)(η•(BQ.empty ())) = η•(η◦(LQ.empty ()))

it suffices to show that α(BQ.empty ()) = LQ.empty ():

1 BQ.X

1 LQ.X

BQ.empty

α

LQ.empty

12

Programming with a phased implementation type

BLQ.empty : 1 → {(b•, l◦) : (BQ.X)×#(LQ.X) | map•(η◦ ◦ α)(b•) = η•(l◦)}
BLQ.empty () := (η•(BQ.empty ()), η◦(LQ.empty ()))

To show

η•(η◦(α(BQ.empty ()))) = η•(η◦(LQ.empty ()))

it suffices to show that α(BQ.empty ()) = LQ.empty ():

1 BQ.X

1 LQ.X

BQ.empty

α

LQ.empty

12

Programming with a phased implementation type

BLQ.empty : 1 → {(b•, l◦) : (BQ.X)×#(LQ.X) | map•(η◦ ◦ α)(b•) = η•(l◦)}
BLQ.empty () := (η•(BQ.empty ()), η◦(LQ.empty ()))

To show

η•(η◦(α(BQ.empty ()))) = η•(η◦(LQ.empty ()))

it suffices to show that α(BQ.empty ()) = LQ.empty ():

1 BQ.X

1 LQ.X

BQ.empty

α

LQ.empty

12

noninterference and modularity

“The principle of non-interference”:. . . the correct

working. . . can be established by taking. . . into account [the]

exterior specification only, and not the particulars of [the]

interior construction.

Dijkstra (1965)

12

Noninterference

Definition (queue specification type)

Queue := {Q : PreQueue | abs → (Q = LQ)}

Example

BLQ : Queue, because abstractly, BLQ = LQ.

c1 c2 : (Q : Queue) → N× Q.X

c1 Q := Q.empty () ▷ Q.enqueue 1 ▷ Q.enqueue 2 ▷ Q.dequeue

c2 Q := (1,Q.empty () ▷ Q.enqueue 2)

Theorem

For all Q : Queue, have abstractly, c1(Q) = c1(LQ) = c2(LQ) = c2(Q).

13

Noninterference

Definition (queue specification type)

Queue := {Q : PreQueue | abs → (Q = LQ)}

Example

BLQ : Queue, because abstractly, BLQ = LQ.

c1 c2 : (Q : Queue) → N× Q.X

c1 Q := Q.empty () ▷ Q.enqueue 1 ▷ Q.enqueue 2 ▷ Q.dequeue

c2 Q := (1,Q.empty () ▷ Q.enqueue 2)

Theorem

For all Q : Queue, have abstractly, c1(Q) = c1(LQ) = c2(LQ) = c2(Q).

13

Noninterference

Definition (queue specification type)

Queue := {Q : PreQueue | abs → (Q = LQ)}

Example

BLQ : Queue, because abstractly, BLQ = LQ.

c1 c2 : (Q : Queue) → N× Q.X

c1 Q := Q.empty () ▷ Q.enqueue 1 ▷ Q.enqueue 2 ▷ Q.dequeue

c2 Q := (1,Q.empty () ▷ Q.enqueue 2)

Theorem

For all Q : Queue, have abstractly, c1(Q) = c1(LQ) = c2(LQ) = c2(Q).

13

Noninterference

Definition (queue specification type)

Queue := {Q : PreQueue | abs → (Q = LQ)}

Example

BLQ : Queue, because abstractly, BLQ = LQ.

c1 c2 : (Q : Queue) → N× Q.X

c1 Q := Q.empty () ▷ Q.enqueue 1 ▷ Q.enqueue 2 ▷ Q.dequeue

c2 Q := (1,Q.empty () ▷ Q.enqueue 2)

Theorem

For all Q : Queue, have abstractly, c1(Q) = c1(LQ) = c2(LQ) = c2(Q).

13

cost analysis

You cannot have interchangeable modules unless these

modules share similar complexity behavior. . . Complexity

assertions have to be part of the interface.

Stepanov (1995)

13

Cost analysis in dependent type theory

Calf

Calf is a dependent type theory for cost analysis with a monadic cost effect.

Cost is an effect: charge⟨c⟩(−) records c : C units of cost.

Γ ⊢ v : X

Γ ⊢ ret(v) : M(X)

Γ ⊢ c : C Γ ⊢ e : M(X)

Γ ⊢ charge⟨c⟩(e) : M(X)

Decalf

Decalf extends Calf with inequality of costs (simple directed type theory).

e ≤ e ′ means e and e ′ compute the same data, but e takes less-or-equal cost.

14

Cost analysis in dependent type theory

Calf

Calf is a dependent type theory for cost analysis with a monadic cost effect.

Cost is an effect: charge⟨c⟩(−) records c : C units of cost.

Γ ⊢ v : X

Γ ⊢ ret(v) : M(X)

Γ ⊢ c : C Γ ⊢ e : M(X)

Γ ⊢ charge⟨c⟩(e) : M(X)

Decalf

Decalf extends Calf with inequality of costs (simple directed type theory).

e ≤ e ′ means e and e ′ compute the same data, but e takes less-or-equal cost.

14

Cost analysis in dependent type theory

Calf

Calf is a dependent type theory for cost analysis with a monadic cost effect.

Cost is an effect: charge⟨c⟩(−) records c : C units of cost.

Γ ⊢ v : X

Γ ⊢ ret(v) : M(X)

Γ ⊢ c : C Γ ⊢ e : M(X)

Γ ⊢ charge⟨c⟩(e) : M(X)

Decalf

Decalf extends Calf with inequality of costs (simple directed type theory).

e ≤ e ′ means e and e ′ compute the same data, but e takes less-or-equal cost.

14

record PreQueue where

X : Type

empty : 1 → M(X)

enqueue : N → X → M(X)

dequeue : X → M(N× X)

BQ : PreQueue

BQ.X := List N× List N
BQ.empty () := ret([], [])

BQ.enqueue n (l1, l2) := charge⟨1⟩(ret(n :: l1, l2))

BQ.dequeue (l1, n :: l2) := ret(n, (l1, l2))

BQ.dequeue (l1, []) := charge⟨|l1|⟩(· · · reverse l1 · · ·)

15

record PreQueue where

X : Type

empty : 1 → M(X)

enqueue : N → X → M(X)

dequeue : X → M(N× X)

BQ : PreQueue

BQ.X := List N× List N
BQ.empty () := ret([], [])

BQ.enqueue n (l1, l2) := charge⟨1⟩(ret(n :: l1, l2))

BQ.dequeue (l1, n :: l2) := ret(n, (l1, l2))

BQ.dequeue (l1, []) := charge⟨|l1|⟩(· · · reverse l1 · · ·)

15

LQ.enqueue n l := charge⟨?⟩(ret(l ++ [n]))

LQ.dequeue [] := charge⟨?⟩(ret())(0, [])
LQ.dequeue (n :: l) := charge⟨?⟩(ret(n, l))

BQ.X M(BQ.X)

LQ.X M(LQ.X)

BQ.enqueue n

α M(α)

LQ.enqueue n

?

BQ.X M(N× BQ.X)

LQ.X M(N× LQ.X)

BQ.dequeue

α M(N×α)

LQ.dequeue

?

Observation

This is a common pattern: often, the true cost depends on private details!

16

LQ.enqueue n l := charge⟨?⟩(ret(l ++ [n]))

LQ.dequeue [] := charge⟨?⟩(ret())(0, [])
LQ.dequeue (n :: l) := charge⟨?⟩(ret(n, l))

BQ.X M(BQ.X)

LQ.X M(LQ.X)

BQ.enqueue n

α M(α)

LQ.enqueue n

?

BQ.X M(N× BQ.X)

LQ.X M(N× LQ.X)

BQ.dequeue

α M(N×α)

LQ.dequeue

?

Observation

This is a common pattern: often, the true cost depends on private details!

16

LQ.enqueue n l := charge⟨1⟩(ret(l ++ [n]))

LQ.dequeue [] := charge⟨?⟩(ret())(0, [])
LQ.dequeue (n :: l) := charge⟨?⟩(ret(n, l))

BQ.X M(BQ.X)

LQ.X M(LQ.X)

BQ.enqueue n

α M(α)

LQ.enqueue n

=

BQ.X M(N× BQ.X)

LQ.X M(N× LQ.X)

BQ.dequeue

α M(N×α)

LQ.dequeue

?

Observation

This is a common pattern: often, the true cost depends on private details!

16

LQ.enqueue n l := charge⟨1⟩(ret(l ++ [n]))

LQ.dequeue [] := charge⟨?⟩(ret())(0, [])
LQ.dequeue (n :: l) := charge⟨?⟩(ret(n, l))

BQ.X M(BQ.X)

LQ.X M(LQ.X)

BQ.enqueue n

α M(α)

LQ.enqueue n

=

BQ.X M(N× BQ.X)

LQ.X M(N× LQ.X)

BQ.dequeue

α M(N×α)

LQ.dequeue

?

Observation

This is a common pattern: often, the true cost depends on private details!

16

LQ.enqueue n l := charge⟨1⟩(ret(l ++ [n]))

LQ.dequeue [] := charge⟨0⟩(ret())(0, [])
LQ.dequeue (n :: l) := charge⟨|n :: l |⟩(ret(n, l))

BQ.X M(BQ.X)

LQ.X M(LQ.X)

BQ.enqueue n

α M(α)

LQ.enqueue n

=

BQ.X M(N× BQ.X)

LQ.X M(N× LQ.X)

BQ.dequeue

α M(N×α)

LQ.dequeue

≥

Observation

This is a common pattern: often, the true cost depends on private details!

16

LQ.enqueue n l := charge⟨1⟩(ret(l ++ [n]))

LQ.dequeue [] := charge⟨0⟩(ret())(0, [])
LQ.dequeue (n :: l) := charge⟨|n :: l |⟩(ret(n, l))

BQ.X M(BQ.X)

LQ.X M(LQ.X)

BQ.enqueue n

α M(α)

LQ.enqueue n

=

BQ.X M(N× BQ.X)

LQ.X M(N× LQ.X)

BQ.dequeue

α M(N×α)

LQ.dequeue

≥

Observation

This is a common pattern: often, the true cost depends on private details!

16

The sealing effect

Γ ⊢ e : M(X) Γ, abs ⊢ e◦ : M(X) Γ, abs ⊢ e ≤ e◦

Γ ⊢ seal(e; e◦) : M(X)

Example

1 M(1)

1 M(1)

charge⟨2⟩(ret(⋆))

charge⟨3⟩(ret(⋆))

≥

example : 1 → M(1)

example () = seal(charge⟨2⟩(ret(⋆)); charge⟨3⟩(ret(⋆)))

17

The sealing effect

Γ ⊢ e : M(X) Γ, abs ⊢ e◦ : M(X) Γ, abs ⊢ e ≤ e◦

Γ ⊢ seal(e; e◦) : M(X)

Example

1 M(1)

1 M(1)

charge⟨2⟩(ret(⋆))

charge⟨3⟩(ret(⋆))

≥

example : 1 → M(1)

example () = seal(charge⟨2⟩(ret(⋆)); charge⟨3⟩(ret(⋆)))

17

The sealing effect

Γ ⊢ e : M(X) Γ, abs ⊢ e◦ : M(X) Γ, abs ⊢ e ≤ e◦

Γ ⊢ seal(e; e◦) : M(X)

Example

1 M(1)

1 M(1)

charge⟨2⟩(ret(⋆))

charge⟨3⟩(ret(⋆))

≥

example : 1 → M(1)

example () = seal(charge⟨2⟩(ret(⋆)); charge⟨3⟩(ret(⋆)))

17

BQ.X M(N× BQ.X)

LQ.X M(N× LQ.X)

BQ.dequeue

α M(N×α)

LQ.dequeue

≥

BLQ.dequeue : BLQ.X → M(N× BLQ.X)

BLQ.dequeue (b•, l◦) ≈ seal(map•(BQ.dequeue)(b•); map◦(LQ.dequeue)(l◦))

see the paper for the real thing!

18

BQ.X M(N× BQ.X)

LQ.X M(N× LQ.X)

BQ.dequeue

α M(N×α)

LQ.dequeue

≥

BLQ.dequeue : BLQ.X → M(N× BLQ.X)

BLQ.dequeue (b•, l◦) ≈ seal(map•(BQ.dequeue)(b•); map◦(LQ.dequeue)(l◦))

see the paper for the real thing!

18

conclusion

Techniques Used

• univalence [Voevodsky]

• synthetic phase distinctions [Sterling and Harper]

• modalities [Rijke, Shulman, Spitters]

• Calf [Grodin, Niu, Sterling, Harper]

Related Work

See the paper: we build on a long tradition!

19

Techniques Used

• univalence [Voevodsky]

• synthetic phase distinctions [Sterling and Harper]

• modalities [Rijke, Shulman, Spitters]

• Calf [Grodin, Niu, Sterling, Harper]

Related Work

See the paper: we build on a long tradition!

19

Conclusion

• abstract models (like LQ.X) and abstraction functions (like α) can be built into

types to realize verification-level properties: semantic modularity

• unobtrusive change: only postulate the phase proposition abs

• induces concrete and abstract # modalities and gluing,

which are used to build

BLQ.X := {(b•, l◦) : (BQ.X)×#(LQ.X) | map•(η◦ ◦ α)(b•) = η•(l◦)}

• noninterference/modularity principles are rendered as theorems,

enabling modular verification

• upper-bound cost specifications supported via a phased sealing effect

20

Conclusion

• abstract models (like LQ.X) and abstraction functions (like α) can be built into

types to realize verification-level properties: semantic modularity

• unobtrusive change: only postulate the phase proposition abs

• induces concrete and abstract # modalities and gluing,

which are used to build

BLQ.X := {(b•, l◦) : (BQ.X)×#(LQ.X) | map•(η◦ ◦ α)(b•) = η•(l◦)}

• noninterference/modularity principles are rendered as theorems,

enabling modular verification

• upper-bound cost specifications supported via a phased sealing effect

20

Conclusion

• abstract models (like LQ.X) and abstraction functions (like α) can be built into

types to realize verification-level properties: semantic modularity

• unobtrusive change: only postulate the phase proposition abs

• induces concrete and abstract # modalities and gluing,

which are used to build

BLQ.X := {(b•, l◦) : (BQ.X)×#(LQ.X) | map•(η◦ ◦ α)(b•) = η•(l◦)}

• noninterference/modularity principles are rendered as theorems,

enabling modular verification

• upper-bound cost specifications supported via a phased sealing effect

20

Conclusion

• abstract models (like LQ.X) and abstraction functions (like α) can be built into

types to realize verification-level properties: semantic modularity

• unobtrusive change: only postulate the phase proposition abs

• induces concrete and abstract # modalities and gluing,

which are used to build

BLQ.X := {(b•, l◦) : (BQ.X)×#(LQ.X) | map•(η◦ ◦ α)(b•) = η•(l◦)}

• noninterference/modularity principles are rendered as theorems,

enabling modular verification

• upper-bound cost specifications supported via a phased sealing effect

20

Conclusion

• abstract models (like LQ.X) and abstraction functions (like α) can be built into

types to realize verification-level properties: semantic modularity

• unobtrusive change: only postulate the phase proposition abs

• induces concrete and abstract # modalities and gluing,

which are used to build

BLQ.X := {(b•, l◦) : (BQ.X)×#(LQ.X) | map•(η◦ ◦ α)(b•) = η•(l◦)}

• noninterference/modularity principles are rendered as theorems,

enabling modular verification

• upper-bound cost specifications supported via a phased sealing effect

20

Bonus Slides

Semantics

Semantics (abstract)

Interpreting JabsK := ⊤, then JBLQ.X K = JLQ.X K.

Semantics (concrete)

Interpreting JabsK := ⊥, then JBLQ.X K = JBQ.X K.

Semantics (presheaf/Kripke semantics on world poset {abs ⊢ ⊤})

Interpreting JabsK :=

 0

1

, then JBLQ.X K =

 List N× List N

List N

α

.

An incomplete list of related work

• Univalent representation independence [Angiuli, Cavallo, Mörtberg, and Zeuner]

• Verification of data structures [Nipkow et al.]

• Ghost code [Owicki and Gries; Filliâtre; Sterling]

• Algebraic specification [Sannella and Tarlecki] and views [Wadler]

• Existential types [Mitchell and Plotkin; Reynolds; Sterling] and Hoare logic [Hoare]∑
X :Type F (X)

∑
s:S P(s)

∑
s:S Q(s)

(∑
X :Type F (X)

)
/rep. ind. S S

∃X .F (X) {P}f {Q}

inj

proof

proj1 proj1

f

The behavioral phase

Definition

The abstract phase [from Calf] is a proposition, beh.

When beh holds, we ignore cost:

e ≤ e ′ → e = e ′

Corollary

Behaviorally, charge⟨c⟩(e) = e.

Definition (queue specification type, with cost)

Queue := {Q : PreQueue | beh → (Q = LQ)}

The real dequeue

BLQ.dequeue : BLQ.X → M(N× BLQ.X)

BLQ.dequeue (η•b, l◦) := seal(impl; spec)

BLQ.dequeue (∗ , l◦) := spec

where

impl := let ret(n, b′) = BQ.dequeue b in ret(n, (η•b′, η◦(α b′)))

spec := let ret(n, l ′) = LQ.dequeue (l◦) in ret(n, (∗ , η◦l
′))

	motivation
	abstraction functions
	the abstract phase
	noninterference and modularity
	cost analysis
	conclusion
	Appendix

